PIGA: PARTITIONED INVERTED INDEX USING GENETIC ALGORITHM

Suteera Vonganansup

A Thesis Submitted in Partial

Fulfillment of the Requirements for the Degree of

Master of Science (Computer Science)

School of Applied Statistics

National Institute of Development Administration

2007

PIGA: PARTITIONED INVERTED INDEX USING GENETIC ALGORITHM

Suteera Vonganansup School of Applied Statistics

The Examining Committee Approved This Thesis Submitted in Partia
Fulfillment of the Requirements for the Degree of Master of Science (Computer
Science).
Assistant Professor
(Ohm Sornil, Ph.D)
Associate Professor. P. Hyronvun/chakon Committee
(Pipat Hiranvanichakorn, D.E.)
Associate Professor. 5. Art
(Surapong Auwatanamongkol, Ph.D.)
Associate Professor 5 At Dean
(Surapong Auwatanamongkol, Ph.D.)
Date

ABSTRACT

Title of Thesis PIGA: Partitioned Inverted Index Using Genetic

Algorithm

Author Suteera Vonganansup

Degree Master of Science (Computer Science)

Year 2007

The dramatic increase in the amount of content available in digital forms gives rise to large-scale digital libraries, targeted to support millions of users and terabytes of data. Retrieving information from a system of this scale in an efficient manner is a challenging task due to the size of the collection as well as the index. In this paper, we propose Partitioned Inverted Index using Genetic Algorithm (PIGA) that determines a near-optimal partitioning of an inverted index across nodes in a system to support searching of information in a large-scale digital library, implemented atop a network of workstations. Simulation experiments on a terabytes of text show that this organization outperforms previously proposed techniques over a wide range of conditions.

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support, encouragement, and patience of several people who deserve recognition for their contributions.

First of all, I would like to express sincere thank to my major advisor; Assistant Professor Dr. Ohm Sornil for his boundless and instructive help, valuable guidance, encouragement and support throughout the research in so many ways. Moreover, I am deeply grateful to the committee members, Associate Professor Dr. Pipat Hiranvanichakorn and Associate Professor Dr. Surapong Auwatanamongkol for their valuable advices and constructive comments.

Second, I would like to thank School of Applied Statistics, all faculty members and officers for their supports throughout the time I studied at NIDA.

Finally, I wish to express my gratitude to my parents Yaehlian and Suriyong Vonganansup and my sisters and my brothers for their love, supports, and understanding over the time. I would also like to thank my wonderful friends who have provided helps, advice, and companionship during my study at NIDA.

Suteera Vonganansup April 2007