• English
    • ไทย
  • ไทย 
    • English
    • ไทย
  • เข้าสู่ระบบ
ดูรายการข้อมูล 
  •   หน้าแรกของ คลังปัญญา
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • ดูรายการข้อมูล
  •   หน้าแรกของ คลังปัญญา
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • ดูรายการข้อมูล
JavaScript is disabled for your browser. Some features of this site may not work without it.

เรียกดูข้อมูล

ข้อมูลทั้งหมดของ คลังปัญญาชุมชน & กลุ่มข้อมูลวันที่เผยแพร่ผู้แต่งชื่อเรื่องหัวเรื่องวันที่เพิ่มข้อมูลประเภททรัพยากรกลุ่มข้อมูลนี้วันที่เผยแพร่ผู้แต่งชื่อเรื่องหัวเรื่องวันที่เพิ่มข้อมูลประเภททรัพยากร

บัญชีของฉัน

เข้าสู่ระบบ

The Markov analysis of residential mobility patterns in low-cost housing in the Bangkok metropolitan areas : case study in the area of Bangkhen-Don Muang, Bang Kapi, Phra Khanong and Nonthaburi

by Srismorn Suriyasasin

ชื่อเรื่อง:

The Markov analysis of residential mobility patterns in low-cost housing in the Bangkok metropolitan areas : case study in the area of Bangkhen-Don Muang, Bang Kapi, Phra Khanong and Nonthaburi

ผู้แต่ง:

Srismorn Suriyasasin

ผู้ควบคุมงานวิจัย:

Somboonwan Satyarakwit, advisor

ชื่อปริญญา:

Doctor of Philosophy

ระดับปริญญา:

Doctoral

สาขาวิชา:

Population and Development

คณะ/หน่วยงาน:

School of Applied Statistics

หน่วยงานที่ประสาทปริญญา:

National Institute of Development Administration

วันที่เผยแพร่:

2536

หน่วยงานที่เผยแพร่:

National Institute of Development Administration

บทคัดย่อ/เนื้อเรื่องย่อ:

The first part of the study is to apply the Markov technique to analyze the residential mobility patterns only in a case study of four types of low-cost housing. Those are row house/townhouse, condominium, up-graded slum housing and housing in non-graded slum. All residences are located in the districts of Bangkhen-Don Muang, Bang Kapi, Phra Khanong and Nonthaburi. The total sample is 1,400 households, and the informants may be chiefs of households or spouses. The residential mobility patterns here are those which occur on average 10 years per time.
The one step transition probability of residential mobility was derived from the numbers of samples who are now staying in one of the four types of low-cost housing and had their former residence in one of th four types of low-cost housing.
The logistic regression was employed to analyzed the factors affecting residential mobility. The difference of salary is a factor which appears to influence the movers in almost every group, which indicates that money is the most important factor influencing low income group mobility.
From logistic regression, the simulation technique was used to determine whether a person is a mover or nonmover among four types of low-cost housing. The probability of residential mobility was then developed.
When comparing the probability of residential mobility analyzed by a logistic regression model and the Markov model, it is found that the values have rather difference. This phenomenon may be explained by the factors which are used to analyze with logit. They are all expected variables which are estimated to be influenced to the individual's decision whenever he changes his dwelling but the true decision to move or not move may come from other varialbles which are not taken into the model. The decision process is rather complex. It depends on the individual who has to make the decision and also depends on situations, environment and time. However, to use Markov to calculate the probability of residential mobility will not isolate the factors affecting the movers but will analyze instead the result of the individual's decision.

รายละเอียดเพิ่มเติม:

Thesis (Ph.D. (Population and Development))--National Institute of Development Administration, 1993.

หัวเรื่องมาตรฐาน:

Residential mobility -- Thailand -- Bangkok

คำสำคัญ:

Internal migration
Migration
Population geography
Markov processes
Low cost housing
Housing

ประเภททรัพยากร:

Dissertation

ความยาว:

vi, 58 p

ชนิดของสื่อ:

Text

รูปแบบแฟ้มข้อมูล:

application/pdf

ภาษา:

eng

สิทธิในการใช้งาน:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

URI:

http://repository.nida.ac.th/handle/662723737/356
แสดงระเบียนรายการแบบเต็ม

แฟ้มในรายการข้อมูลนี้ (EXCERPT)

Thumbnail
ดู
  • nida-diss-b12416ab.pdf ( 68.31 KB )

ทรัพยากรสารสนเทศทั้งหมดในคลังปัญญา ใช้เพื่อประโยชน์ทางการเรียนการสอนและการค้นคว้าเท่านั้น และต้องมีการอ้างอิงแหล่งที่มาทุกครั้งที่นำไปใช้ ห้ามดัดแปลงเนื้อหา และทำสำเนาต่อ รวมถึงไม่ให้อนุญาตนำไปใช้ประโยชน์เพื่อการค้า ไม่ว่ากรณีใด ๆ ทั้งสิ้น



แฟ้มในรายการข้อมูลนี้ (CONTENT)

Thumbnail
ดู
  • nida-diss-b12416.pdf ( 2,798.55 KB )

ทรัพยากรสารสนเทศทั้งหมดในคลังปัญญา ใช้เพื่อประโยชน์ทางการเรียนการสอนและการค้นคว้าเท่านั้น และต้องมีการอ้างอิงแหล่งที่มาทุกครั้งที่นำไปใช้ ห้ามดัดแปลงเนื้อหา และทำสำเนาต่อ รวมถึงไม่ให้อนุญาตนำไปใช้ประโยชน์เพื่อการค้า ไม่ว่ากรณีใด ๆ ทั้งสิ้น



This item appears in the following Collection(s)

  • GSAS: Dissertations [166]

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

‹›×