• English
    • ไทย
  • English 
    • English
    • ไทย
  • Login
View Item 
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Wisdom RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource TypesThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource Types

My Account

Login

A permutation test for partial regression coefficients on first-order autocorrelation

by Pradthana Minsan

Title:

A permutation test for partial regression coefficients on first-order autocorrelation

Author(s):

Pradthana Minsan

Advisor:

Pachitjanut Siripanich, advisor

Degree name:

Doctor of Philosophy

Degree level:

Doctoral

Degree discipline:

Statistics

Degree department:

School of Applied Statistics

Degree grantor:

National Institute of Development Administration

Issued date:

2010

Digital Object Identifier (DOI):

10.14457/NIDA.the.2010.87

Publisher:

National Institute of Development Administration

Abstract:

This dissertation proposes a permutation test and a permutation procedure for testing on partial regression coefficients from a multiple linear regression with first-order autocorrelation where the distribution of the error terms is not necessarily normal. The proposed permutation procedure can be directly conducted in the test without having to fit back to the model, which is not the same procedure as in previous permutation tests, and a proposed permutation test is considered based on a random permutation test. In addition, the asymptotic analysis of the proposed test can be obtained when errors are i.i.d. with mean zero and finite variance. The asymptotic distribution of , called the asymptotic chi-squared test, can be used to perform a significance test of partial regression coefficients. It was found that, for a small sample size (T=12), the proposed permutation method has the same type I error rate as the partial F-statistic and is not significantly different from the significance level , and has a higher power when compare with the other methods in the case where autocorrelation approached . However, with a moderate sample size (T=16, 20), the asymptotic chi-squared test is preferred (in terms of type I error and power of the test).

Description:

Thesis (Ph.D. (Statistics))--National Institute of Development Administration, 2010

Subject(s):

Permutations
Regression analysis
Autocorrelation (Statistics)

Resource type:

Dissertation

Extent:

ix, 97 leaves : ill. ; 30 cm.

Type:

Text

File type:

application/pdf

Language:

eng

Rights:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

URI:

http://repository.nida.ac.th/handle/662723737/378
Show full item record

Files in this item (CONTENT)

Thumbnail
View
  • nida-diss-b169886.pdf ( 3,520.10 KB )

ทรัพยากรสารสนเทศทั้งหมดในคลังปัญญา ใช้เพื่อประโยชน์ทางการเรียนการสอนและการค้นคว้าเท่านั้น และต้องมีการอ้างอิงแหล่งที่มาทุกครั้งที่นำไปใช้ ห้ามดัดแปลงเนื้อหา และทำสำเนาต่อ รวมถึงไม่ให้อนุญาตนำไปใช้ประโยชน์เพื่อการค้า ไม่ว่ากรณีใด ๆ ทั้งสิ้น



This item appears in the following Collection(s)

  • GSAS: Dissertations [166]

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

‹›×