• English
    • ไทย
  • English 
    • English
    • ไทย
  • Login
View Item 
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Wisdom RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource TypesThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource Types

My Account

Login

Estimation of regression coefficients with outliers

by Pimpan Amphanthong

Title:

Estimation of regression coefficients with outliers

Author(s):

Pimpan Amphanthong

Advisor:

Prachoom Suwattee, advisor

Degree name:

Doctor of Philosophy

Degree level:

Doctoral

Degree discipline:

Statistics

Degree department:

School of Applied Statistics

Degree grantor:

National Institute of Development Administration

Issued date:

2009

Digital Object Identifier (DOI):

10.14457/NIDA.the.2009.142

Publisher:

National Institute of Development Administration

Abstract:

In linear models, the ordinary least squares estimators of have always turned out to be the best linear unbiased estimates. When the sample data contain outliers, the outliers may have a considerable effect on the least-squares estimates of , and an alternative approach to the problem is needed to obtain a better fit of the model or more precise estimates of . In this study, new weights were constructed for the sample data from two new influence functions and applied in the estimation of regression coefficients with outliers. Two sets of weights, modified weight one (MW1) and modified weight two (MW2), were obtained and applied to the Mestimates of the regression coefficients with outliers so that the effects of the outliers would be lessinfluential. The estimates were compared with the least-squares and other M-estimates by simulation. It was found that the estimates using MW1 have a tendency to give larger values of coefficients of determination than the others, for all sample sizes and with any percentage of X-outliers, Y-outliers or XY-outliers. The MW2 was superior to MW1 in cases of large sample sizes and high percentages of X-outliers. It also performed well for small sample sizes and with low percentages of Y-outliers and XY-outliers. The mean squares errors obtained from MW1 and MW2 were smaller than the others for all sample sizes and with any percentage of X-outliers, Y-outliers and XY- outliers. MW1 worked better than MW2 for all sample sizes and with any percentage of X-outliers, but MW2 was better than MW1 for small or medium sample sizes and with any percentage of Y-outliers or XY-outliers.

Description:

Thesis (Ph.D. (Statistics))--National Institute of Development Administration, 2009

Subject(s):

Regression analysis
Outliers (Statistics)

Resource type:

Dissertation

Extent:

x, 160 leaves : ill. ; 30 cm.

Type:

Text

File type:

application/pdf

Language:

eng

Rights:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

URI:

http://repository.nida.ac.th/handle/662723737/391
Show full item record

Files in this item (CONTENT)

Thumbnail
View
  • nida-diss-b165456.pdf ( 2.32 MB )

ทรัพยากรสารสนเทศทั้งหมดในคลังปัญญา ใช้เพื่อประโยชน์ทางการเรียนการสอนและการค้นคว้าเท่านั้น และต้องมีการอ้างอิงแหล่งที่มาทุกครั้งที่นำไปใช้ ห้ามดัดแปลงเนื้อหา และทำสำเนาต่อ รวมถึงไม่ให้อนุญาตนำไปใช้ประโยชน์เพื่อการค้า ไม่ว่ากรณีใด ๆ ทั้งสิ้น



This item appears in the following Collection(s)

  • GSAS: Dissertations [166]

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

‹›×