• English
    • ไทย
  • English 
    • English
    • ไทย
  • Login
View Item 
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Wisdom RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource TypesThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource Types

My Account

Login

A block diagonal covariance matrix test and discriminant analysis of high-dimensional data

by Poompong Kaewumpai

Title:

A block diagonal covariance matrix test and discriminant analysis of high-dimensional data

Author(s):

Poompong Kaewumpai

Advisor:

Samruam Chongcharoen

Degree name:

Doctor of Philosophy

Degree level:

Doctoral

Degree department:

School of Applied Statistics

Degree grantor:

National Institute of Development Administration

Issued date:

2017

Digital Object Identifier (DOI):

10.14457/NIDA.the.2017.48

Publisher:

National Institute of Development

Abstract:

In this dissertation, a new test statistic for testing for a block diagonal covariance matrix structure with a multivariate normal population where the number of variables p exceeds the number of observations n is proposed. Whereas classical approaches such as the likelihood ratio test cannot be applied when p n  , the proposed test statistic is based on the ratio of the estimators of 2 tr and 2 trD , where  is the population covariance matrix and D is the population covariance matrix under the null hypothesis. Furthermore, the asymptotic distribution of the proposed test statistic under the null hypothesis is standard normal. The performance of proposed test statistic was assessed using a simulation study, in which empirical type I error values and the empirical power were used to show its performance. The empirical type I error values were close to the significance level and the empirical power values were closed to 1 in all cases. Moreover, the performance of the proposed test was compared with another previously reported test statistic, and the empirical power values of the proposed test statistic were shown to be higher than those of the comparative test statistic in some cases
Two new discriminant methods for high-dimensional data under the multivariate normal population with a block diagonal covariance matrix structure are also proposed. For the first method, the sample covariance matrix is approximated as a singular matrix based on the idea of reducing the dimensionality of the observations and using a well-conditioned covariance matrix. For the second method, a sample block diagonal covariance matrix is used instead. The performance of these two methods were compared with some of the previously reported methods via a simulation study, the results of which show that both proposed methods outperformed the other comparative methods under various conditions. In addition, the proposed test for testing block diagonal covariance matrix structure and the two new proposed methods for discriminant analysis were applied to a real-life dataset

Description:

Thesis (Ph.D. (Statistics))--National Institute of Development Administration, 2017

Keyword(s):

Covariance matrix test
High dimensionality

Resource type:

Dissertation

Extent:

155 leaves

Type:

Text

File type:

application/pdf

Language:

eng

Rights:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

URI:

https://repository.nida.ac.th/handle/662723737/5784
Show full item record

Files in this item (CONTENT)

Thumbnail
View
  • b201075.pdf ( 3,117.68 KB )

ทรัพยากรสารสนเทศทั้งหมดในคลังปัญญา ใช้เพื่อประโยชน์ทางการเรียนการสอนและการค้นคว้าเท่านั้น และต้องมีการอ้างอิงแหล่งที่มาทุกครั้งที่นำไปใช้ ห้ามดัดแปลงเนื้อหา และทำสำเนาต่อ รวมถึงไม่ให้อนุญาตนำไปใช้ประโยชน์เพื่อการค้า ไม่ว่ากรณีใด ๆ ทั้งสิ้น



This item appears in the following Collection(s)

  • GSAS: Dissertations [166]

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

‹›×