A PENALTY FUNCTION IN BINARY LOGISTIC REGRESSION

Piyada Phrueksawatnon

A Dissertation Submitted in Partial
Fulfillment of the Requirements for the Degree of
Doctor of Philosophy (Statistics)
School of Applied Statistics
National Institute of Development Administration

A PENAL̇TY FUNCTION IN BINARY LOGISTIC REGRESSION

Piyada Phrueksawatnon

School of Applied Statistics

Professor \square Yinemen Y.ithl Major Advisor (Jirawan Jitthavech, Ph.D.)

Associate Professor. \qquad Co-Advisor
(Vichit Lorchirachoonkul, Ph.D.)

The Examining Committee Approved This Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Dortor of Philosophy (Statistics).

(Supol Durongwatana, PhD.)

Assistant Professor \qquad
人 Dean
(Pramote Luenam, PhD.)
June 2019

Abstract

Title of Dissertation Author Degree Year

A Penalty Function in Binary Logistic Regression Miss Piyada Phrueksawatnon Doctor of Philosophy (Statistics) 2018

An algorithm is proposed to determine the logistic ridge parameter minimizing the MSE of the estimated parameter estimators, together with a theorem on the upperbound of the optimal logistic ridge parameter to facilitate the nonlinear optimization. A simulation is used to evaluate the relative efficiencies of the proposed estimator and other six well-known ridge estimators with respect to the maximum likelihood estimator. The simulation results confirm that the relative efficiency of the proposed estimator is highest among other well-known estimators. Finally, a real-life data set is used to repeat the evaluation and the conclusion is the same as in the simulation.

ACKNOWLEDGEMENTS

First and foremost, I offer my sincerest gratitude to my advisor Professor Dr.Jirawan Jitthavech who has supported me throughout this study and my co-advisor Associate Professor Dr.Vichit Lorchirachoonkul who has provided much assistance so that I can overcome the difficulties in my dissertation - without both of them this dissertation would not have been completed.

I am grateful to my dissertation committee members: Associate Professor Dr.Supol Durongwatana, Professor Dr.Samruam Chongcharoen, Professor Dr.Jirawan Jitthavech, and Associate Professor Dr.Vichit Lorchirachoonkul for their suggestions. I feel delighted to extend gratitude towards all of my friends, especially for whom at the Graduate School of Applied Statistics, National Institute of Development Administration (NIDA), for making my time full of happiness and energy. I gratefully acknowledge the School of Applied Statistics, NIDA for providing the facilities, and the Ministry of Science and Technology, Thailand and the University of Payao for financial support.

Finally, I would like to thank my family for their love and support; their love is always inside me.

TABLE OF CONTENTS

Page

ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES vii
LIST OF FIGURE viii
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Objectives of the Study 2
1.3 Scope of the Study 2
1.4 Usefulness of the Study 2
CHAPTER 2 LITERATURE REVIEW 4
2.1 The Development of the Logistic Regression Model 4
2.2 The Estimating Parameter for the Logistic Regression Model 8
2.3 The Problem of Multicollinearity in Logistic Regression 13
2.4 Penalized Regression 15
CHAPTER 3 THE PROPOSED ESTIMATOR 24
3.1 The Proposed Estimator 24
3.2 The Bounds of the Ridge Parameter 28
CHAPTER 4 SIMULATION STUDY 47
4.1 Detail of the Simulation Study 47
4.2 The Results of the Simulation Study 49
4.3 A Real-Life Data Example 54
CHAPTER 5 CONCLUSION AND FUTURE SEARCH 59
5.1 Conclusions 59
5.2 Recommendations for Future Work 60

(vi)

BIBLIOGRAPHY 61
APPENDICES 66
Appendix A The Results of the Simulation Study 67
Appendix B Distribution of Ridge Parameter in Case of Having 104
Three Explanatory Variables
Appendix C Distribution of Ridge Parameter in Case of Having 140 Five Explanatory Variables
Appendix D The Lee Cancer Remission Dataset 176
BIOGRAPHY 178

LIST OF TABLES

[^0]4.1 The Relative Efficiencies of $k_{o p t}, k_{H K}, k_{H K B}, k_{S R W 1}, k_{S R W 2}$, 52$k_{G M}$ and $k_{W A}$ in the Case of Three Explanatory Variables
4.2 The Relative Efficiencies of $k_{\text {opt }}, k_{H K}, k_{H K B}, k_{S R W 1}, k_{S R W 2}$, 53$k_{G M}$ and $k_{W A}$ in the Case of Five Explanatory Variables
4.3 The Mean and Median of $k_{u b}$ in the Case of Three 54 Explanatory Variables
4.4 The Mean and Median of $k_{u b}$ in the Case of Five Explanatory 54
Variables
4.5 The Correlation Matrix of the Explanatory Variables in 55 the Lee Cancer Remission Dataset ($n=27$)
4.6 Estimates of Standardized Regression Coefficients 56
(Standard Error), Ridge Parameter (k), MSE, RE and DEV by ML and LRR Estimators
4.7 Estimates of Regression Coefficients (Standard Error) 58 by ML and LRR Estimators

LIST OF FIGURES

Figures
Page
3.1 Comparison of $\frac{k_{u b}}{c}$ in (3.35) and (3.47) as a Function of $\frac{\delta}{c}$

CHAPTER 1

INTRODUCTION

This chapter is organized as follows. The background on multicollinearity is introduced in Section 1.1, and the objective, scope, and usefulness of the study are presented in Sections 1.2-1.4.

1.1 Background

The problem of multicollinearity (near-multicollinearity in this dissertation) occurs when the explanatory variables are highly correlated. This problem is common in applied research and leads to high variance and unstable parameter estimates when estimating both ordinary least squares (OLS) in linear regression and the maximum likelihood (ML) estimator in logistic regression. Both $\mathbf{X}^{\prime} \mathbf{X}$ in linear regression and $\mathbf{X}^{\prime} \mathbf{V X}$ in logistic regression are ill-conditioned matrices that are near singularity, and they directly affect the performance of the estimator. Moreover, they result in undesirable asymptotic properties in a logistic regression such as large variances, which can cause a lack of statistical significance in the test for an individual predictor even when the overall model is strongly significant (e.g. Schaefer, 1986; Marx and Smith, 1990; Mansson and Shukur, 2011; Ogoke, Nduka and Nja, 2013).

Penalized regression methods are the most effective and popular to remedy the multicollinearity problem. The common concept of these is a tradeoff between the variances and biases of the parameter estimates whereby the penalization yields regression coefficients with lower variances but higher biases than in the unpenalized model. Ridge regression is a very popular method but offers more efficient estimates that may be biased (De Grange, Fariña and De Dios Ortúzar, 2015). Moreover, an important obstacle in ridge regression is the selection of a ridge estimator which does
not have an exact criterion, and so many researchers have proposed methods to estimate the ridge parameter.

In this dissertation, finding the optimal value of the ridge parameter without approximation is the goal, thus an extended study of the penalized function of a binary logistic regression in the presence of multicollinearity is of interest. This leads to the construction of a new estimator by applying penalization using a penalized ML estimator instead of the standard method when the data are multicollinear among the explanatory variables.

1.2 Objectives of the Study

In this study, a penalty function in binary logistic regression is considered with the following objectives as:

1) To propose a new estimator in binary logistic regression in present of multicollinearity
2) To investigate the properties of the proposed estimator

1.3 Scope of the Study

In this study, the proposed estimator is derived based on multiple logistic regression with a binary outcome in presence of the multicollinearity under the following scopes:

1) Assume that some explanatory variables have high correlation levels, while the other explanatory variables are independent or have low correlation levels.
2) The data are assumed to have no missing values

1.4 Usefulness of the Study

The proposed estimator can be applied in many fields such as clinical trials, medicine, biomedicine, biostatistics, health sciences, social sciences, finance, economics, engineering, and even politics for classification problems or for predicting
the probability of an interesting event. For example, in a clinical trial, logistic regression can be utilized to classify the type of cancer cells based on genetic data, while in politics, it might be used to predict whether a voter will vote for an interested political party based on personal information such as age, income, gender, abode, voting in previous elections, and so on.

CHAPTER 2

LITERATURE REVIEW

In this study, the area of interest is a binary logistic regression model in the presence of multicollinearity. This chapter starts with a review of the development of the binary logistic model and its assumptions (Section 2.1) followed by a review of the estimating parameter for the logistic regression model (Section 2.2). Next, a review of the problem of multicollinearity in logistic regression is provided in Section 2.3, and finally, a review of penalty regression is presented in Section 2.4

2.1 The Development of the Logistic Regression Model

Logistic regression is commonly used to model the probability of a binary outcome when given explanatory variables of interest: these can be either categorical or continuous. In addition to the features of the dependent variable, the difference between logistic and linear regression can both be reflected in a model and in the assumptions. This provides the conditional mean of the regression model in the range 0 and 1 for exhibiting a change in the conditional mean per unit in an explanatory variable. Hence, it is widely applied in many fields, especially in clinical trials, medicine, health sciences, etc. because a model with an S-shaped curve could be used to describe the combined effect of several risk factors on the risk of, for instance, contracting a disease. The maximum likelihood (ML) method is used to estimate parameters in the linear predictor (e.g. Hosmer and Lemeshow, 1989, 2000: 4-10). For logistic regression modeling, binary logistic regression where the response data can take one of two possible values (0 or 1) is used in the present study.

Consider the linear regression model

$$
\begin{equation*}
y_{i}=\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}+\varepsilon_{i}, \tag{2.1}
\end{equation*}
$$

where $\mathbf{w}_{i}^{\prime}=\left(\mathbf{1}, \mathbf{w}_{i 1}, \mathbf{w}_{i 2}, \ldots, \mathbf{w}_{i p}\right) ; \mathbf{w}_{i j}$ is a $p \times 1$ vector of the centered and scaled explanatory variables, where $w_{i j}=\frac{x_{i j}-\bar{x}_{j}}{S S_{j}^{1 / 2}} ; i=1,2, \ldots, n ; j=1,2, \ldots, p ;$ $S S_{j}=\sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2} ; x_{i j}$ is the observed value in unit i of explanatory variable $j ;$ $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{p}\right)^{\prime}$ is a $p \times 1$ standardized regression parameter vector; y_{i} is the response in unit i; and ε_{i} is the error for unit $i, \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$.Moreover, Schaefer (1979:3) mentioned "without loss of generality".

The expectation of y_{i} in (2.1) is

$$
\begin{equation*}
E\left(\mathrm{y}_{i}\right)=\mathbf{w}_{i}^{\prime} \boldsymbol{\beta} . \tag{2.2}
\end{equation*}
$$

In the case where dependent variable y_{i} is a dummy variable with only two possible values (0 or 1), the expectation of y_{i} becomes

$$
\begin{align*}
E\left(y_{i}\right) & =1 \cdot P\left(y_{i}=1\right)+0 \cdot P\left(y_{i}=0\right), \\
& =P\left(y_{i}=1\right) . \tag{2.3}
\end{align*}
$$

From (2.1) and (2.3), this implies that

$$
\begin{equation*}
E\left(y_{i} \mid \mathbf{w}_{i}\right)=\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}=P\left(y_{i}=1 \mid \mathbf{w}_{i}\right) . \tag{2.4}
\end{equation*}
$$

Equation (2.4) is called the "linear probability model" and is defined in terms of a linear predictor. The variance of y_{i} can be written as

$$
\begin{align*}
\operatorname{Var}\left(y_{i}\right) & =E\left[y_{i}-E\left(y_{i}\right)\right]^{2}, \\
& =\left[1-P\left(y_{i}=1\right)\right]^{2} P\left(y_{i}=1\right)+\left[-P\left(y_{i}=1\right)\right]^{2} P\left(y_{i}=0\right), \\
& =\left[1-P\left(y_{i}=1\right)\right]^{2} P\left(y_{i}=1\right)+\left[P\left(y_{i}=1\right)\right]^{2}\left[1-P\left(y_{i}=1\right)\right], \\
& =P\left(y_{i}=1\right)\left[1-P\left(y_{i}=1\right)\right]\left[1-P\left(y_{i}=1\right)+P\left(y_{i}=1\right)\right], \\
& =P\left(y_{i}=1\right)\left[1-P\left(y_{i}=1\right)\right] . \tag{2.5}
\end{align*}
$$

Since a regression model has the important assumption of ε_{i} and if a regression analysis is applied with dependent variable y_{i} is a dummy variable (0 or 1), then ε_{i} can be either of two values. When considering (2.1), if $y_{i}=1$, then $\varepsilon_{i}=1-\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}$ with $P\left(y_{i}=1\right)$, and if $y_{i}=0$, then $\varepsilon_{i}=-\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}$ with $P\left(y_{i}=0\right)$. Therefore,

$$
\begin{align*}
E\left(\varepsilon_{i}\right) & =\left(-\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right) P\left(y_{i}=0\right)+\left(1-\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right) P\left(y_{i}=1\right), \\
& =\left(-\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)\left[1-P\left(y_{i}=1\right)\right]+\left(1-\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right) P\left(y_{i}=1\right), \\
& =-P\left(y_{i}=1\right)\left[1-P\left(y_{i}=1\right)\right]+\left[1-P\left(y_{i}=1\right)\right] P\left(y_{i}=1\right), \\
& =0, \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{Var}\left(\varepsilon_{i}\right) & =\left(-\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)^{2} P\left(y_{i}=0\right)+\left(1-\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)^{2} P\left(y_{i}=1\right), \\
& =\left[-P\left(y_{i}=1\right)\right]^{2}\left[1-P\left(y_{i}=1\right)\right]+\left[1-P\left(y_{i}=1\right)\right]^{2} P\left(y_{i}=1\right), \\
& =P\left(y_{i}=1\right)\left[1-P\left(y_{i}=1\right)\right]\left[P\left(y_{i}=1\right)+1-P\left(y_{i}=1\right)\right], \\
& =P\left(y_{i}=1\right)\left[1-P\left(y_{i}=1\right)\right] . \tag{2.7}
\end{align*}
$$

From (2.6) and (2.7), it can be concluded that the error has a distribution with zero mean and variance $P\left(y_{i}=1\right)\left[1-P\left(y_{i}=1\right)\right]$ in which its variance depends on the values of the explanatory variables. Thus, when assuming that ε_{i} is not true, which results in the estimator, then the error assumption is not true. Therefore, when the outcome variable is dichotomous in logistic regression, the error term violates the
assumptions of homoscedasticity and normality. Using the OLS method yields an unbiased estimator, but the estimated variance of the estimator is not the smallest. Thus, the standard errors in the presence of heteroscedasticity will be incorrect and any test for significance will be invalid. Therefore, we need to fit the regression model when the dependent variable is dichotomous to find the predicted values of the response ($\hat{\mathbf{y}}$) necessary using the linear probability model in (2.4). The value of $\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}$ is the probability estimate of $P\left(y_{i}=1\right)$ (i.e. $\left.P\left(y_{i}=1\right)=\pi\left(\mathbf{w}_{i}\right)\right)$, which is in the interval 0 and 1 $\left(0<P\left(y_{i}=1\right)=\pi\left(\mathbf{w}_{i}\right)<1\right)$. However, the estimate of $\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}$ might be below 0 or above 1 depending on the range of values of the explanatory variables, i.e. $-\infty<\mathbf{w}_{\boldsymbol{i}}^{\prime} \boldsymbol{\beta}<\infty$. To improve this problem, $\pi\left(\mathbf{w}_{i}\right)$ needs to be transformed into odds and the natural log of the odds for eliminating the ceiling of 1 and the floor of 0 . To consider the interval of probability $\pi\left(\mathbf{w}_{i}\right), 0<\pi\left(\mathbf{w}_{i}\right)<1$ by taking the odds, we have $0<\frac{\pi\left(\mathbf{w}_{i}\right)}{1-\pi\left(\mathbf{w}_{i}\right)}<\infty$, and then by taking the natural \log of the odds, $-\infty<\ln \left[\frac{\pi\left(\mathbf{w}_{i}\right)}{1-\pi\left(\mathbf{w}_{i}\right)}\right]<\infty$. Hence, we can obtain $-\infty<\ln \left[\frac{\pi\left(\mathbf{w}_{i}\right)}{1-\pi\left(\mathbf{w}_{i}\right)}\right]<\infty$ and $-\infty<\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}<\infty$.

There is a function for linking between the distribution of \mathbf{y} and the linear predictor in logistic regression and is known as the "logit link":

$$
\begin{equation*}
\log i t\left(\pi\left(\mathbf{w}_{i}\right)\right)=\ln \left[\frac{\pi\left(\mathbf{w}_{i}\right)}{1-\pi\left(\mathbf{w}_{i}\right)}\right] \tag{2.8}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\ln \left[\frac{\pi\left(\mathbf{w}_{i}\right)}{1-\pi\left(\mathbf{w}_{i}\right)}\right] & =\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}, \tag{2.9}\\
\frac{\pi\left(\mathbf{w}_{i}\right)}{1-\pi\left(\mathbf{w}_{i}\right)} & =\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right),
\end{align*}
$$

$$
\begin{aligned}
1+\frac{\pi\left(\mathbf{w}_{i}\right)}{1-\pi\left(\mathbf{w}_{i}\right)} & =1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right) \\
\frac{1}{1-\pi\left(\mathbf{w}_{i}\right)} & =1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right) \\
1-\pi\left(\mathbf{w}_{i}\right) & =\frac{1}{1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)} \\
\pi\left(\mathbf{w}_{i}\right) & =\frac{\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)}
\end{aligned}
$$

The equation (2.9) is called "log odds" or "logit". The logistic regression model is defined as

$$
\begin{equation*}
P\left(\mathrm{y}_{i}=1 \mid \mathbf{w}_{\mathbf{i}}\right)=\frac{\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)}=\pi\left(\mathbf{w}_{i}\right), \quad 0<\pi\left(\mathbf{w}_{\mathbf{i}}\right)<1, \quad \mathrm{i}=1,2, \ldots, \mathrm{n} . \tag{2.10}
\end{equation*}
$$

Hereinafter, the assumptions of the logistic regression model (Midi, Sarkar and Rana, 2010; Jirawan Jitthavech, 2015: 326-327) are:

1) y_{i} is Bernoulli distribution, $y_{i} \in\{0,1\}, i=1,2, \ldots, n$.
2) $y_{i}, i=1,2, \ldots, n$ is independent.
3) $w_{i j}, i=1,2, \ldots, n, j=1,2, \ldots, p$ are not linear combinations of each other.
4) Errors are Bernoulli distributed.
5) No important variables are omitted.
6) No extraneous variables are included.
7) The explanatory variables are measured without error.

2.2 The Estimating Parameter for the Logistic Regression Model

As discussed earlier, the error term has neither a normal distribution nor equal variances for the explanatory variable values, so the parameter estimates from OLS would give inefficient estimates. Instead of the OLS method, an ML estimator can be
used to estimate the regression coefficient in a logistic regression model. The objective of this estimation is to find a set value for parameter $\boldsymbol{\beta}$ that maximizes the likelihood function. In a very general sense, the ML method yields values for the unknown parameters which maximize the probability of obtaining the observed set of data (Hosmer and Lemeshow, 2000: 8). The likelihood function for Equation (2.5) can be written as

$$
\begin{equation*}
L\left(\boldsymbol{\beta} \mid y_{i}\right)=\prod_{i=1}^{n} \pi\left(w_{i}\right)^{y_{i}}\left[1-\pi\left(w_{i}\right)\right]^{1-y_{i}}, \quad i=1,2, \ldots, n . \tag{2.11}
\end{equation*}
$$

However, for convenience in mathematical calculations, it is easier to work with the logarithm of Equation (2.11), and so the log-likelihood function can be defined as

$$
\begin{align*}
l(\boldsymbol{\beta}) & =\sum_{i=1}^{n}\left\{y_{i} \ln \pi\left(w_{i}\right)+\left(1-y_{i}\right) \ln \left[1-\pi\left(w_{i}\right)\right]\right\}, \\
& =\sum_{i=1}^{n}\left\{y_{i} \ln \pi\left(w_{i}\right)+\ln \left[1-\pi\left(w_{i}\right)\right]-y_{i} \ln \left[1-\pi\left(w_{i}\right)\right]\right\}, \\
& =\sum_{i=1}^{n}\left\{y_{i} \ln \left[\frac{\pi\left(w_{i}\right)}{1-\pi\left(w_{i}\right)}\right]+\ln \left[1-\pi\left(w_{i}\right)\right]\right\}, \\
& =\sum_{i=1}^{n}\left\{y_{i}\left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)-\ln \left[1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)\right]\right\} . \tag{2.12}
\end{align*}
$$

Equation (2.12) is differentiated with respect to $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$, and the first derivative of (2.12) is in the form

$$
\begin{aligned}
l^{\prime}(\boldsymbol{\beta})=\frac{\partial l(\boldsymbol{\beta})}{\partial \beta_{j}} & =\sum_{i=1}^{n}\left\{y_{i} w_{i j}-\frac{\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)} \cdot w_{i j}\right\}, \\
& =\sum_{i=1}^{n} y_{i} w_{i j}-\sum_{i=1}^{n} \frac{\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)}{1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)} \cdot w_{i j}, \\
& =\sum_{i=1}^{n} y_{i} w_{i j}-\sum_{i=1}^{n} \pi\left(\mathbf{w}_{i}\right) \cdot w_{i j}
\end{aligned}
$$

$$
\begin{equation*}
l^{\prime}(\boldsymbol{\beta})=\sum_{i=1}^{n} w_{i j}\left[y_{i}-\pi\left(\mathbf{w}_{i}\right)\right] . \tag{2.13}
\end{equation*}
$$

This implies the matrix form

$$
\begin{equation*}
l^{\prime}(\boldsymbol{\beta})=\frac{\partial l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})], \tag{2.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{W}=\left[\begin{array}{ccccc}
1 & w_{11} & w_{12} & \ldots & w_{1 p} \\
1 & w_{21} & w_{22} & \ldots & w_{2 p} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & w_{n 1} & w_{n 1} & \ldots & w_{n p}
\end{array}\right]=\left[\begin{array}{lllll}
\mathbf{1} & \mathbf{w}_{1} & \mathbf{w}_{2} & \ldots & \mathbf{w}_{n}
\end{array}\right]^{\prime}, \\
& \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{\pi}\left(\mathbf{w}_{i}\right)=\left[\begin{array}{c}
\pi\left(\mathbf{w}_{1}\right) \\
\pi\left(\mathbf{w}_{2}\right) \\
\vdots \\
\pi\left(\mathbf{w}_{n}\right)
\end{array}\right], \quad \mathbf{V}=\operatorname{diag}\left(\pi\left(\mathbf{w}_{i}\right)\left(1-\pi\left(\mathbf{w}_{i}\right)\right)\right) .
\end{aligned}
$$

Moreover, to find the optimal $\boldsymbol{\beta}$, the derivative equations are set to zero, thus the likelihood score equations can be expressed as

$$
\begin{equation*}
\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]=\mathbf{0} . \tag{2.15}
\end{equation*}
$$

The second derivative of (2.12) is in the form

$$
\begin{align*}
l^{\prime \prime}(\boldsymbol{\beta}) & =\frac{\partial^{2} l(\boldsymbol{\beta})}{\partial \beta_{j} \partial \beta_{k}} \\
& =-\sum_{i=1}^{n} \frac{\partial}{\partial \beta_{k}}\left\{w_{i j}\left[y_{i}-\pi\left(\mathbf{w}_{i}\right)\right]\right\}, \\
& =-\sum_{i=1}^{n} w_{i j}\left\{\frac{\left[1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)\right] \exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right) w_{i k}-\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right) \exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right) w_{i k}}{\left[1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)\right]^{2}}\right\}, \\
& =-\sum_{i=1}^{n} w_{i j} w_{i k}\left\{\frac{\left[1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)-\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)\right] \exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)}{\left[1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)\right]^{2}}\right\}, \\
& =-\sum_{i=1}^{n} w_{i j} w_{i k}\left\{\frac{\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)}{\left[1+\exp \left(\mathbf{w}_{i}^{\prime} \boldsymbol{\beta}\right)\right]^{2}}\right\}, \\
& =-\sum_{i=1}^{n} w_{i j} w_{i k}\left\{\pi\left(\mathbf{w}_{i}\right)\left[1-\pi\left(\mathbf{w}_{i}\right)\right]\right\} . \tag{2.16}
\end{align*}
$$

Equation (2.16) implies the matrix form

$$
\begin{equation*}
l^{\prime \prime}(\boldsymbol{\beta})=\frac{\partial^{2} l(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}=-\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}, \tag{2.17}
\end{equation*}
$$

where V is a diagonal matrix with elements $v_{i}=\pi\left(\mathbf{w}_{i}\right)\left[1-\pi\left(\mathbf{w}_{i}\right)\right], i=1,2, \ldots, n$.
The most common technique for estimating parameter $\boldsymbol{\beta}$ is the ML method. From normalized Equation (2.15), the closed form of estimate $\boldsymbol{\beta}$ cannot be found, but the maximum likelihood estimate (MLE) of $\boldsymbol{\beta}$ can be obtained by using an iteratively reweighted least-squares algorithm. The value of $\hat{\boldsymbol{\beta}}$ at the $(\mathrm{t}+1)^{s t}$ iteration in the Newton-Raphson method (Hosmer and Lemeshow, 1989) is given by the value of $\hat{\boldsymbol{\beta}}$ at the $t^{\text {th }}$ iteration as

$$
\begin{align*}
\hat{\boldsymbol{\beta}}^{t+1} & =\hat{\boldsymbol{\beta}}^{t}+\left[-\left.l^{\prime \prime}(\boldsymbol{\beta})\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}^{t}}\right]^{-1}\left(\left.l^{\prime}(\boldsymbol{\beta})\right|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}^{t}}\right), \\
& =\hat{\boldsymbol{\beta}}^{t}+\left(\mathbf{W}^{\prime} \hat{\mathbf{V}}^{t} \mathbf{W}\right)^{-1} \mathbf{W}^{\prime}\left[\mathbf{y}-\hat{\boldsymbol{\pi}}^{t}(\mathbf{w})\right] \\
& =\left(\mathbf{W}^{\prime} \hat{\mathbf{V}}^{t} \mathbf{W}\right)^{-1}\left[\left(\mathbf{W}^{\prime} \hat{\mathbf{V}}^{t} \mathbf{W}\right) \hat{\boldsymbol{\beta}}^{t}+\mathbf{W}^{\prime}\left(\mathbf{y}-\hat{\boldsymbol{\pi}}^{t}(\mathbf{w})\right)\right], \\
& =\left(\mathbf{W}^{\prime} \hat{\mathbf{V}}^{t} \mathbf{W}\right)^{-1} \mathbf{W}^{\prime} \hat{\mathbf{V}}^{t}\left[\mathbf{W} \hat{\boldsymbol{\beta}}^{t}+\left(\hat{\mathbf{V}}^{t}\right)^{-1}\left(\mathbf{y}-\hat{\boldsymbol{\pi}}^{t}(\mathbf{w})\right)\right], \tag{2.18}
\end{align*}
$$

where t denotes the iteration step, $\mathbf{W}=\left[\begin{array}{lllll}\mathbf{1} & \mathbf{w}_{1} & \mathbf{w}_{2} & \ldots & \mathbf{w}_{n}\end{array}\right]^{\prime}$ is an $n \times p$ observation matrix in which the $i^{t h}$ row is $\mathbf{w}_{i}, \hat{\mathbf{V}}^{t}$ is an $n \times n$ diagonal matrix in which the diagonal element is $\hat{\boldsymbol{\pi}}^{t}(\mathbf{w})\left[1-\hat{\boldsymbol{\pi}}^{t}(\mathbf{w})\right]$, and $\hat{\boldsymbol{\pi}}^{t}(\mathbf{w})$ is an $n \times 1$ vector of the $i^{t h}$ element of the estimated $\boldsymbol{\pi}(\mathbf{w})$ value at the $t^{\text {th }}$ iteration. Obviously, $\hat{\boldsymbol{\beta}}^{t+1}$ in (2.18) can be written as

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}^{t+1}=\left(\mathbf{W}^{\prime} \hat{\mathbf{V}}^{t} \mathbf{W}\right)^{-1} \mathbf{W}^{\prime} \hat{\mathbf{V}}^{t} \hat{\mathbf{z}}^{t} \tag{2.19}
\end{equation*}
$$

where $\hat{\mathbf{z}}^{t}=\mathbf{W} \hat{\boldsymbol{\beta}}^{t}+\left(\hat{\mathbf{V}}^{t}\right)^{-1}\left[\mathbf{y}-\hat{\boldsymbol{\pi}}^{t}(\mathbf{w})\right]$.
When convergence is obtained, $\hat{\boldsymbol{\beta}}^{t+1}$ becomes the ML estimator $\hat{\boldsymbol{\beta}}_{M L}$ (Schaefer, 1979; Hosmer and Lemeshow, 2000; Rashid and Shifa, 2009; Okeh and Oyeka, 2013; Al Turk and Alsomahi, 2014):

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{M L}=\lim _{t \rightarrow \infty}\left(\mathbf{W}^{\prime} \hat{\mathbf{V}}^{t} \mathbf{W}\right)^{-1} \mathbf{W}^{\prime} \hat{\mathbf{V}}^{t} \hat{\mathbf{z}}^{t}=\left(\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}\right)^{-1} \mathbf{W}^{\prime} \hat{\mathbf{V}} \hat{\mathbf{z}} . \tag{2.20}
\end{equation*}
$$

In the studies by Schaefer (1979) and Lee and Silvapulle (1988), the authors found that the category explanatory variables might result in the MLE not existing (if there is a perfect explanatory variable of the outcome). To overcome this problem, the model can be rebuilt without this category of explanatory variable, which results in the

MLE always existing. Moreover, there should be enough reason to exclude this variable in the model.

Under certain regular conditions (Cox and Hinkley, 1974; Rashid, 2008; Rashid and Shifa, 2009), as n increases, $\hat{\boldsymbol{\beta}}_{M L}$ asymptotically approaches $\boldsymbol{\beta}$ and is distributed as $\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{M L}-\boldsymbol{\beta}\right) \sim N\left(\mathbf{0},\left(\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}\right)^{-1}\right)$ (Schaefer, 1979; Lee and Silvapulle, 1988; Marx, 1988; Duffy and Santner, 1989; Akay, 2014). The asymptotic mean square error (MSE) of $\hat{\boldsymbol{\beta}}_{M L}$ is defined as

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\boldsymbol{\beta}}_{M L}\right)=E\left[\left(\hat{\boldsymbol{\beta}}_{M L}-\boldsymbol{\beta}\right)^{\prime}\left(\hat{\boldsymbol{\beta}}_{M L}-\boldsymbol{\beta}\right)\right]=\operatorname{tr}\left(\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}\right)^{-1}=\sum_{j} \frac{1}{\lambda_{j}}, \tag{2.21}
\end{equation*}
$$

where $\lambda_{j} \geq 0, j=0,1,2, \ldots, p$, is the $j^{\text {th }}$ eigenvalue of the semi-definite matrix $\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}$ (Schaefer, 1979; Marx, 1988; Marx and Smith, 1990).

2.3 The Problem of Multicollinearity in Logistic Regression

In the presence of multicollinearity, two or more explanatory variables are highly correlated, thus multicollinearity can be defined as the nearly linear dependence of the column of \mathbf{W} which violates the assumption of the logistic regression (2.10). In a logistic regression model, Schaefer (1979) demonstrated that multicollinearity affects the $\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}$ matrix in the same way as in the $\mathbf{W}^{\prime} \mathbf{W}$ matrix in multiple linear regression.

Theorem 2.1: If matrix \mathbf{W} is near singularity, then $\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}$ is an ill-conditioned matrix where \mathbf{V} is nonsingular.
Proof. Let $\boldsymbol{\Sigma}$ be a variance-covariance matrix of \mathbf{Y} and assume that \mathbf{u} is any non-zero $n \times 1$ column vector, $\mathbf{u} \in R^{n}$. By definition, $\boldsymbol{\Sigma}=E\left[(\mathbf{Y}-E[\mathbf{Y}])(\mathbf{Y}-E[\mathbf{Y}])^{\prime}\right]$, then

$$
\mathbf{u}^{\prime} \mathbf{\Sigma} \mathbf{u}=E\left[\left\{(\mathbf{Y}-E[\mathbf{Y}])^{\prime} \mathbf{u}\right\}^{\prime}\left\{(\mathbf{Y}-E[\mathbf{Y}])^{\prime} \mathbf{u}\right\}\right]=E\left[s^{2}\right] \geq 0, \quad s=(\mathbf{Y}-E[\mathbf{Y}])^{\prime} \mathbf{u} .
$$

Let $\mathbf{V}=\operatorname{diag}(\boldsymbol{\Sigma})=\operatorname{diag}\left(\pi\left(\mathbf{w}_{i}\right)\left(1-\pi\left(\mathbf{w}_{i}\right)\right)\right) ; 0<\pi\left(\mathbf{w}_{i}\right)<1$. Since $\boldsymbol{\Sigma}$ is positive definite, then \mathbf{V} is positive definite as well as being nonsingular, thus it can be written as $\mathbf{V}=\mathbf{V}^{\frac{1}{2}} \mathbf{V}^{\frac{1}{2}}$. Consider $\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}=\mathbf{W}^{\prime} \mathbf{V}^{\frac{1}{2}} \mathbf{V}^{\frac{1}{2}} \mathbf{W}=\mathbf{L}^{\prime} \mathbf{L}$, where $\mathbf{L}=\mathbf{V}^{-\frac{1}{2}} \mathbf{W}$, and we have $r(\mathbf{W})=r(\mathbf{L})$. When two or more explanatory variables in a logistic regression model are highly correlated, we have $r(\mathbf{W})<p$, and thus $r(\mathbf{L})<p$. Hence, $\left(\mathbf{L}^{\prime} \mathbf{L}\right)^{-1}$ does not exist and $\mathbf{L}^{\prime} \mathbf{L}$ is called an ill-conditioned matrix.

Since the semi-definite matrix $\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}$ is not full rank, there is near singularity in the W'VW matrix (Marx and Smith, 1990; Vágó and Kemény, 2006), resulting in the problem in the inverse matrix $\left(\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}\right)^{-1}$ because of $\operatorname{det}\left(\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}\right)=\prod_{j=0}^{p} \lambda_{j} \cong 0$ and $\lambda_{j} \cong 0$ for some j. This may induce imprecision in the MLEs since
$\hat{\boldsymbol{\beta}}_{M L}=\left(\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}\right)^{-1} \mathbf{W}^{\prime} \hat{\mathbf{V}} \hat{\mathbf{z}}$. The covariance estimate of regression coefficients are inflated, leading to large standard errors which affect the confidence intervals and hypothesis testing (Hoerl and Kennard, 1970). If the degree of multicollinearity becomes more severe, there are common characteristics in the identification of multicollinearity (e.g. Schaefer, 1979; Schaefer, Roi and Wolfe, 1984; Schaefer, 1986):
i) The subsidiary or the auxiliary regression (the regression of each explanatory variable $\left(w_{i}\right)$ on the remaining explanatory variables with computing corresponding R^{2} (Gujarati and Porter, 2010)), R_{j}^{2}, tends to one for some j.
ii) The sum of squared residuals from the regression model in (i) tends to zero.
iii) The smallest eigenvalue tends to zero.

If there are one or more near-linear dependences in the data, then one or more eigenvalues in $\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}$ will be small, which means that the variance of the corresponding regression coefficient will be large. Therefore, when the degree of multicollinearity is more intense, one or more of the estimates will be unstable and the estimates may not reflect the true effect of the explanatory variables. In practice, multicollinearity inflates the estimated variances of the ML estimator and thus can cause precision problems when identifying the effects of the explanatory variables
(Schaefer, Roi and Wolfe, 1984). Ryan (1997) selected an indicator of multicollinearity in a logistic regression. If the explanatory variables are all continuous, then pairwise correlation and variance inflation factors may be used, but if some explanatory variables are not continuous, one possible check for multicollinearity in qualitative variables is the kappa measure of agreement.

2.4 Penalized Regression

In the presence of multicollinearity or when having a large number of predictors, the ML method often realizes unstable estimates and inaccurate variances of the logistic regression associated with parameter estimates and certain prediction regions. There are several corrections for dealing with the multicollinearity problem. Penalized regression methods are one of the most effective and popular methods to remedy the multicollinearity problem. The common concept of penalized regression is a tradeoff between the variances and biases of the parameter estimates. The penalization yields regression coefficients with lower variances than in an unpenalized model, but it gives high biases in the regression coefficients. Hence, for fitting the logistic regression, the model is penalized by adding a penalty function to its likelihood function. The penalty term provides biased penalized estimates but can also substantially reduce the variance. Moreover, depending on the form of the penalty, it allows us to carry out variable selection as well as shrinkage of the estimates (Crotty and Barker, 2014). There are two ways that penalization methods can assist as variable selection and shrinkage. The penalty criterion is in the form

$$
\begin{equation*}
l^{p}(\boldsymbol{\beta})=l(\boldsymbol{\beta})-k P(\boldsymbol{\beta}), \tag{2.22}
\end{equation*}
$$

where $P(\cdot)$ is a penalty function on the parameter and k is penalty parameter. The estimate of $\hat{\boldsymbol{\beta}}$ is the maximization of Equation (2.22):

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\arg \max }\left\{l^{p}(\boldsymbol{\beta})\right\} .
$$

A proper penalty function should produce an estimator having three properties accordingly avoiding excessive bias (unbiasedness), forcing sparse solutions to reduce the model complexity (sparsity), and satisfying certain conditions to produce a continuous model (stability). These conditions imply that the penalty function must be singular at the origin and nonconvex over $(0, \infty)$ (Antoniadis and Fan, 2001). Moreover, the penalty function should be selected based on principles that can solve the optimization problem easily.

Many penalty functions have been proposed in several articles. For example, the L_{1} penalty, $P(\boldsymbol{\beta})=\|\boldsymbol{\beta}\|_{1}$, results in a LASSO (least absolute shrinkage and selection operator) which can generate sparse models that are easily interpretable. However, when the explanatory variables comprise a category, the LASSO solution can exhibit an undesirable feature by selecting only dummy variables instead of whole factors (Meier, van de Geer and Bühlmann, 2008; Makalic and Schmidt, 2011). Moreover, the empirical observations indicate that if there are many high correlations between explanatory variables, the prediction performance of LASSO is dominated by ridge regression (Tibshirani, 1996). Next, the L_{2} penalty (or quadratic penalty), $P(\boldsymbol{\beta})=\|\boldsymbol{\beta}\|_{2}^{2}$, yields ridge-type regression, which is nevertheless a popular method. Therefore, in this work, the focus is on ridge regression in a logistic regression model, the details of which are explained next.

2.4.1 Logistic Ridge Regression

Ridge regression in multiple regressions for improving the problem of multicollinearity was first proposed by Hoerl and Kennard (1970). Next, Schaefer, Roi and Wolfe (1984) derived a ridge-type estimator by applying the idea of the ridge parameter by Hoerl and Kennard (1970) in multiple linear regression to logistic regression. They defined logistic ridge regression (LRR) as an estimator that minimizes the length of the estimate of $\boldsymbol{\beta}$. The ridge logistic estimator obtained by Schaefer et al. (1984) is defined as

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{L R R}(k)=\left(\mathbf{W}^{\prime} \mathbf{V W}+\boldsymbol{k} \mathbf{I}_{p}\right)^{-1}\left(\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}\right) \hat{\boldsymbol{\beta}}_{M L} . \tag{2.23}
\end{equation*}
$$

However, in Equation (2.23), \mathbf{V} depends on the unknown parameter $\boldsymbol{\beta}$, so in any application, they proposed using

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{L R R}(k)=\left(\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}+k \mathbf{I}_{p}\right)^{-1}\left(\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}\right) \hat{\boldsymbol{\beta}}_{M L}, \tag{2.24}
\end{equation*}
$$

where $\hat{\mathbf{V}}$ is an estimate of \mathbf{V} using $\hat{\boldsymbol{\beta}}_{M L}$ and the ridge parameter $k \geq 0$ determines the amount of shrinkage. The present work references the logistic ridge estimator of Schaefer et al. (1984) because the MSE of the estimator is of interest.

Later, Le Cessie and Houwellingen (1992) applied ridge regression to logistic regression for correcting parameter estimates and decreasing prediction errors. This method adds an L_{2} penalty parameter to the likelihood function such that coefficients are shrunk individually according to the variance of each explanatory variable. By following the concept of the penalized ridge regression, the penalized log-likelihood becomes a combination of the \log-likelihood $l(\boldsymbol{\beta})$ in Equation (2.11) and a penalty function of L_{2} norm of $\boldsymbol{\beta}$ expressed as (Duffy and Santner, 1989; Le Cessie and Van Houwelingen, 1992)

$$
\begin{equation*}
l_{L R R}(\boldsymbol{\beta})=l(\boldsymbol{\beta})-\frac{k}{2} \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}, \tag{2.25}
\end{equation*}
$$

where k is penalty parameter (called "ridge parameter").
The logistic ridge estimator can by found by maximizing Equation (2.25):

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{L R R}=\underset{\boldsymbol{\beta}}{\arg \max }\left(l(\boldsymbol{\beta})-\frac{k}{2} \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}\right) . \tag{2.26}
\end{equation*}
$$

The first derivative of (2.25) is in the form

$$
\begin{equation*}
l_{L R R}^{\prime}(\boldsymbol{\beta})=\frac{\partial l_{L R R}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]-k \boldsymbol{\beta} . \tag{2.27}
\end{equation*}
$$

The second derivative of (2.25) is in the form

$$
\begin{equation*}
l_{L R R}^{\prime \prime}(\boldsymbol{\beta})=\frac{\partial^{2} l_{L R R}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}}=-\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}-k \mathbf{I}, \tag{2.28}
\end{equation*}
$$

where \mathbf{I} is a $(p \times 1) \times(p \times 1)$ identity matrix.

The Newton-Raphson method is the conventional iterative method to solve (2.25) by updating the parameter vector in the Newton-Raphson step; Lee and Van Houwelingen (1992) proposed a first approximation for the ridge logistic estimator as

$$
\begin{align*}
\hat{\boldsymbol{\beta}}_{L R R}^{(1)}(k) & =\boldsymbol{\beta}_{0}+\left[-\left.l_{L R R}^{\prime \prime}(\boldsymbol{\beta})\right|_{\boldsymbol{\beta}=\boldsymbol{\beta}_{0}}\right]^{-1}\left(\left.l_{L R R}^{\prime}(\boldsymbol{\beta})\right|_{\boldsymbol{\beta}=\boldsymbol{\beta}_{0}}\right), \\
& =\boldsymbol{\beta}_{0}+\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}+k \mathbf{I}\right)^{-1}\left\{\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]-k \boldsymbol{\beta}_{0}\right\}, \\
& =\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}+k \mathbf{I}\right)^{-1}\left\{\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}+k \mathbf{I}\right) \boldsymbol{\beta}_{0}+\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]-k \boldsymbol{\beta}_{0}\right\}, \\
& =\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}+k \mathbf{I}\right)^{-1}\left\{\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}\right) \boldsymbol{\beta}_{0}+\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]\right\}, \\
& =\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}+k \mathbf{I}\right)^{-1}\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}\right)\left\{\boldsymbol{\beta}_{0}+\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}\right)^{-1} \mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]\right\}, \\
& =\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}+k \mathbf{I}\right)^{-1}\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}\right) \hat{\boldsymbol{\beta}}, \tag{2.29}
\end{align*}
$$

where $\hat{\boldsymbol{\beta}}=\boldsymbol{\beta}_{0}+\left(\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}\right)^{-1} \mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]$ with the real parameter value $\boldsymbol{\beta}_{0}$ and the \mathbf{V} matrix evaluated at $\boldsymbol{\beta}_{0}$. Replacing $\mathbf{W}^{\prime} \mathbf{V}\left(\boldsymbol{\beta}_{0}\right) \mathbf{W}$ by its estimate $\mathbf{W}^{\prime} \mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right) \mathbf{W}$ in (2.29) yields the logistic ridge estimator of Schaefer et al. (1984) in (2.24); note that if the ML estimator is infinite, this estimator does not exist (Lee and Van Houwelingen, 1992; Özkale, 2016). The logistic ridge estimator of Schaefer et al. (1984) is mentioned in the present work.

Conventionally, the parameter vector is estimated in two stages to satisfy (2.25). The first stage is to propose a closed-form estimator to approximate the logistic ridge parameter k that fulfills some of the criteria to reduce the total variance of the parameter estimator. The second stage is to estimate the parameter vector $\boldsymbol{\beta}$ in
accordance with (2.26) based on the approximate value of the logistic ridge parameter k in the first stage.

The MSE of the LRR estimator is derived as

$$
\begin{align*}
\operatorname{MSE}\left(\hat{\boldsymbol{\beta}}_{L R R}\right) & =E\left[\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right)^{\prime}\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right)\right], \\
& =E\left[\left(\hat{\boldsymbol{\beta}}_{M L}-\boldsymbol{\beta}\right)^{\prime} \mathbf{A}^{\prime} \mathbf{A}\left(\hat{\boldsymbol{\beta}}_{M L}-\boldsymbol{\beta}\right)\right]+\boldsymbol{\beta}^{\prime}(\mathbf{A}-\mathbf{I})^{\prime}(\mathbf{A}-\mathbf{I}) \boldsymbol{\beta}, \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+k\right)^{2}}+k^{2} \boldsymbol{\beta}^{\prime}\left(\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}+k \mathbf{I}\right)^{-2} \boldsymbol{\beta}^{\prime}, \\
& =\phi_{1}(k)+\phi_{2}(k), \tag{2.30}
\end{align*}
$$

where $\mathbf{A}=\left(\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}$ and λ_{j} is the $j^{\text {th }}$ element of the eigenvalues in $\mathbf{W}^{\prime} \hat{\mathbf{V}} \mathbf{W}$, and the ridge parameter $k \geq 0$ determines the amount of shrinkage. The MSE of the LRR estimator in Equation (2.30) is established from the two important parts: $\phi_{1}(k)$ and $\phi_{2}(k)$. The total variance in (2.30), $\phi_{1}(k)$, is a continuous monotone decreasing function of k, while the second term in (2.30), $\phi_{2}(k)$, is the squared bias of the LRR estimator.

2.4.2 The Selection of Ridge Parameter

Estimating the ridge parameter is an essential problem for ridge regression, and plenty of researchers have proposed various techniques to achieve this. Nevertheless, the ridge regression method does not provide a unique estimate of the estimator to solve the multicollinearity problem since there are no definite fixed rules to select the ridge parameter. Consequently, to find the optimal value of ridge parameter k without estimation is the main focus in this dissertation.

The main problem of ridge regression is to find the optimal value of ridge parameter k, which is of interest in this work. To achieve this, a compromise between the two ideas of fitting the model of dependent variables on the explanatory variables and shrinking the regression coefficients is sought. The ridge parameter controls the amount of shrinkage, so a larger ridge parameter is shrunk more when the sum of
squares of the coefficients is small. Thus, if k approaches infinity, all estimated coefficients tend toward zero. Although it has been pointed out in a large number of studies that the value of ridge parameter k varies in the interval $[0, \infty)$, ridge regression cannot improve the estimated regression coefficients for all cases. To find the value of k, Conniffe and Stone (1973) believed that a suitable value provides estimates of the regression coefficients that are stable with reasonable absolute values and the correct sign. More specifically, a value of k is sought such that the logistic ridge estimator has a lower mean square error (MSE) than the original estimator. Since the MSE of the ridge estimator is a function of variance (the decreasing function of k) and the squared bias (the increasing function of k). Therefore, a value of k must be chosen such that the variance term of the estimator is greater than the increase in the squared bias term. However, the choice of the optimum k is not well-defined.

There have been several researches that focused on different ways to examine the logistic ridge parameter in logistic regression (e.g. Schaefer et. al., 1984; Schaefer, 1986; Lee and Silvapulle, 1988; Le Cessie and Van Houwelingen, 1992; Kibria, Mansson and Shukur, 2012; Özkale and Arıcan, 2016; Asar, 2017; Asar, Arashi and $\mathrm{Wu}, 2017$). However, they struggled to find a closed-form solution for the optimal ridge parameter k based on the data. In the past, since computers were limited when processing large amounts of data, it was necessary to approximate the value of k. However, nowadays, computers have much better performance and science has progressed accordingly, and so finding the closed form of k has become less important. Therefore, finding the optimal real value of the ridge parameter in logistic regression can be carried out without approximating its value, which is the objective of the present study.

It can be seen that as the asymptotic variance decreases, the squared bias becomes large when k increases. Therefore, the objective of logistic regression is to choose a value of k such that the reduction in the variance term is greater than the increase in the squared bias. In multiple regression models, the MSE of ridge regression varies depending on the value of k having the range $0<k<k_{\max }$, which affects the MSE of ridge regression less than that of OLS (Hoerl and Kennard, 1970). Several researches have mainly focused on different ways to examine the ridge parameter (e.g.

Hoerl and Kennard, 1970; Kibria, 2003; Khalaf and Shukur, 2005; Alkhamisi, Khalaf and Shukur, 2006; Muniz and Kibria, 2009; Muniz, Kibria, Mansson and Shukur, 2012). Later, Schaefer et al. (1984) first extended the ridge regression in a logistic regression and demonstrated that LRR outperforms ML when the explanatory variables are multicollinearity, which was later supported by Schaefer (1986) and Mansson and Shukur (2011).

Many studies have investigated ridge parameter k under multiple linear regression models (e.g. Hoerl and Kennard, 1970; Hoerl, Kennard and Baldwin 1975; Kibria, 2003; Khalaf and Shukur, 2005; Alkhamisi, Khalaf and Shukur, 2006; Muniz et al., 2012; Dorugade, 2014).

Mansson and Shukur (2011) investigated a suitable value for ridge parameter k; they advised that the ridge parameter based on Kibria (2003) might be the best option when the degree of correlation between the explanatory variables is $0.75 \leq \rho<0.95$, while the ridge parameter based on Muniz and Kibria (2009) might be proper when the degree of correlation between the explanatory variables is high ($0.95 \leq \rho<1$). They subsequently proposed a generalized $\mathrm{M}(\mathrm{GM})$ estimator.

However, Muniz and Kibria (2009) found that besides the ridge parameter affecting MSE, other factors influence the estimated MSE in multiple linear regressions, namely the correlation between the explanatory variables, sample size, the standard deviation of the errors, and the number of replications. When the standard deviation of the errors increases, the higher correlation between the explanatory variables brings about an increase in MSE whereas an increase in sample size causes a decrease. Later on, a number of researchers studied the determinants impacting the estimate of MSE in logistic regression models consisting of the degree of correlation between the explanatory variables, the value of the intercept, the number of observations, and the number of explanatory variables (e.g. Mansson and Shukur, 2011; Kibria et al., 2012).

In summary, six estimators of the logistic ridge parameter are compared with the proposed value of the ridge parameter

1) The HK estimator (Hoerl and Kennard, 1970)

$$
\begin{equation*}
\hat{k}_{H K}=\frac{\hat{\sigma}^{2}}{\hat{\alpha}_{\max }^{2}} \tag{2.31}
\end{equation*}
$$

2) The HKB estimator (Hoerl et al., 1975)

$$
\begin{equation*}
\hat{k}_{H K B}=\frac{(p+1) \hat{\sigma}^{2}}{\hat{\boldsymbol{\alpha}}^{\prime} \hat{\boldsymbol{\alpha}}} \tag{2.32}
\end{equation*}
$$

3) The SRW1 and SRW2 estimators (Schaefer et al., 1984)

$$
\begin{align*}
& \hat{k}_{S R W 1}=\frac{1}{\hat{\alpha}_{\max }^{2}} \tag{2.33}\\
& \hat{k}_{S R W 2}=\frac{(p+1)}{\hat{\boldsymbol{\alpha}}^{\prime} \hat{\boldsymbol{\alpha}}} \tag{2.34}
\end{align*}
$$

4) The GM estimator (Kibria, 2003)

$$
\begin{equation*}
\hat{k}_{G M}=\frac{\hat{\sigma}^{2}}{\left(\prod_{j=0}^{p} \hat{\alpha}_{j}^{2}\right)^{1 /(p+1)}} \tag{2.35}
\end{equation*}
$$

5) The WA estimator (Wu and Asar, 2016)

$$
\begin{equation*}
\hat{k}_{W A}=\frac{(p+1)}{\sum_{j=0}^{p} \alpha_{j}^{2} /\left[1+\left(1+\lambda_{j} \alpha_{j}^{2}\right)^{1 / 2}\right]} \tag{2.36}
\end{equation*}
$$

In these equations, $\hat{\sigma}^{2}$ is the variance of the residual in the model and $\hat{\alpha}_{j}$ and $\hat{\alpha}_{\text {max }}$ are the respective $j^{\text {th }}$ and maximum elements of vector $\hat{\boldsymbol{\alpha}}=\boldsymbol{\gamma}^{\prime} \hat{\boldsymbol{\beta}}_{M L}$, where γ is the orthogonal transformation such that $\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}=\boldsymbol{\gamma}^{\prime} \mathbf{\Lambda} \boldsymbol{\gamma}$ and $\boldsymbol{\Lambda}$ is the diagonal matrix of the eigenvalues of $\mathbf{W}^{\prime} \mathbf{V} W$ (Schaefer, 1979; Schaefer et al., 1984; Marx, 1988; Kibria et al., 2012).

CHAPTER 3

THE PROPOSED ESTIMATOR

In this chapter, an estimator for logistic regression in the face of multicollinearity is proposed in Section 3.1, and the bounds of the ridge parameter are derived and discussed in Section 3.2.

3.1 The Proposed Estimator

An iterative algorithm for determining the optimal ridge parameter k is proposed using a criterion to minimize the MSEs of the estimated coefficients in the logistic regression model. In the neighborhood of convergence, the vector of the first derivatives of the penalized log-likelihood function in (2.25) with respect to $\boldsymbol{\beta}$ approaches zero. Expanding the vector of the first derivatives about the population parameter vector $\boldsymbol{\beta}$ as a Taylor Series yields a first order approximation as

$$
\begin{aligned}
\frac{\partial l_{L R R}\left(\hat{\boldsymbol{\beta}}_{L R R}\right)}{\partial \boldsymbol{\beta}} & \left.\approx l_{L R R}^{\prime}(\boldsymbol{\beta})\right|_{\boldsymbol{\beta}}+\left.\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right) l_{L R R}^{\prime \prime}(\boldsymbol{\beta})\right|_{\boldsymbol{\beta}}, \\
& =\left.\left\{\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]-k \boldsymbol{\beta}\right\}\right|_{\beta}-\left.\left(\mathbf{W}^{\prime} \mathbf{V W}+k \mathbf{I}\right)\right|_{\boldsymbol{\beta}}\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left.\frac{\partial l_{L R R}\left(\hat{\boldsymbol{\beta}}_{L R R}\right)}{\partial \boldsymbol{\beta}} \approx\left\{\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]-k \boldsymbol{\beta}\right\}\right|_{\beta}-\left.\left(\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}+k \mathbf{I}\right)\right|_{\boldsymbol{\beta}}\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right)=0 \tag{3.1}
\end{equation*}
$$

After a few manipulations in (3.1), it can be shown that

$$
\begin{aligned}
\left.\left\{\mathbf{W}^{\prime}[\mathbf{y}-\boldsymbol{\pi}(\mathbf{w})]-k \boldsymbol{\beta}\right\}\right|_{\boldsymbol{\beta}}-\left.\left(\mathbf{W}^{\prime} \mathbf{V} \mathbf{W}+k \mathbf{I}\right)\right|_{\boldsymbol{\beta}}\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right) & =0, \\
\left.\mathbf{W}^{\prime}(\mathbf{y}-\boldsymbol{\pi}(\mathbf{w}))\right|_{\boldsymbol{\beta}}-k \boldsymbol{\beta}-\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right) & =0, \\
\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right) & =\left.\mathbf{W}^{\prime}(\mathbf{y}-\boldsymbol{\pi}(\mathbf{w}))\right|_{\boldsymbol{\beta}}+k \boldsymbol{\beta} \\
\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right) \hat{\boldsymbol{\beta}}_{L R R} & =\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W} \boldsymbol{\beta}+\left.\mathbf{W}^{\prime}(\mathbf{y}-\boldsymbol{\pi}(\mathbf{w}))\right|_{\boldsymbol{\beta}}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{L R R}=\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1}\left[\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W} \boldsymbol{\beta}+\left.\mathbf{W}^{\prime}(\mathbf{y}-\boldsymbol{\pi}(\mathbf{w}))\right|_{\boldsymbol{\beta}}\right], \tag{3.2}
\end{equation*}
$$

and then

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{L R R}=\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W} \hat{\boldsymbol{\beta}}_{M L} \tag{3.3}
\end{equation*}
$$

The asymptotic bias and variance of $\hat{\boldsymbol{\beta}}_{L R R}$ in matrix form in (3.3) can be expressed as

$$
\begin{align*}
\operatorname{Bias}\left(\hat{\boldsymbol{\beta}}_{L R R}\right) & =E\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right), \\
& =E\left[\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W} \hat{\boldsymbol{\beta}}_{M L}\right]-\boldsymbol{\beta}, \\
& =\left[\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\right] E\left(\hat{\boldsymbol{\beta}}_{M L}\right)-\boldsymbol{\beta}, \\
& =\left[\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\right] \boldsymbol{\beta}-\boldsymbol{\beta}, \\
& =\left[\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}-\mathbf{I}\right] \boldsymbol{\beta}, \\
& =\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1}\left[\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}-\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)\right] \boldsymbol{\beta}, \\
& =-k\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \boldsymbol{\beta}, \tag{3.4}
\end{align*}
$$

And

$$
\begin{align*}
\operatorname{Var} & \left(\hat{\boldsymbol{\beta}}_{L R R}\right) \\
& =\operatorname{Var}\left[\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W} \hat{\boldsymbol{\beta}}_{M L}\right], \\
& =\left[\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\right] \operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{M L}\right)\left[\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\right]^{\prime}, \\
& =\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1}, \\
& =\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} . \tag{3.5}
\end{align*}
$$

The scalar form of (3.5) can be written as

$$
\begin{align*}
\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{L R R}\right) & =\operatorname{tr}\left[\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1}\right], \\
& =\operatorname{tr}\left[\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-2}\right], \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+k\right)^{2}} . \tag{3.6}
\end{align*}
$$

Subsequently, the asymptotic MSE of $\hat{\boldsymbol{\beta}}_{L R R}$ is given by

$$
\begin{align*}
\operatorname{MSE}\left(\hat{\boldsymbol{\beta}}_{L R R}\right) & =E\left[\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right)^{\prime}\left(\hat{\boldsymbol{\beta}}_{L R R}-\boldsymbol{\beta}\right)\right], \\
& =\operatorname{tr}\left[\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{L R R}\right)\right]+\left[\operatorname{Bias}\left(\hat{\boldsymbol{\beta}}_{L R R}\right)\right]^{2}, \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+k\right)^{2}}+\left[-k\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \boldsymbol{\beta}\right]^{\prime}\left[-k\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-1} \boldsymbol{\beta}\right], \\
& =\sum_{j} \frac{\lambda_{j}}{\left(\lambda_{j}+k\right)^{2}}+k^{2} \boldsymbol{\beta}^{\prime}\left(\mathbf{W}^{\prime} \mathbf{V}(\boldsymbol{\beta}) \mathbf{W}+k \mathbf{I}\right)^{-2} \boldsymbol{\beta} . \tag{3.7}
\end{align*}
$$

In practice, since the parameter $\boldsymbol{\beta}$ and $\mathbf{V}(\boldsymbol{\beta})$ are unknown, the parameters $\boldsymbol{\beta}$ and $\mathbf{V}(\boldsymbol{\beta})$ are replaced by their estimates $\hat{\boldsymbol{\beta}}_{M L}$ and $\mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right)$, respectively, in (3.4) and (3.6),
and following the decomposition of the symmetric matrix $\left(\mathbf{W}^{\prime} \mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right) \mathbf{W}+k \mathbf{I}\right)$, $\operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{L R R}\right)$ becomes the approximate asymptotic MSE of $\hat{\boldsymbol{\beta}}_{\text {LRR }}$, which can be expressed as

$$
\begin{align*}
\operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right) & =\sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{2}}+k^{2} \hat{\boldsymbol{\beta}}_{M L}^{\prime}\left(\mathbf{W}^{\prime} \mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right) \mathbf{W}+k \mathbf{I}\right)^{-2} \hat{\boldsymbol{\beta}}_{M L}, \\
& =\frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{2}}+k^{2} \hat{\boldsymbol{\beta}}_{M L}^{\prime}\left(\boldsymbol{\gamma} \mathbf{\Lambda} \boldsymbol{\gamma}^{\prime}+k \mathbf{I}\right)^{-2} \hat{\boldsymbol{\beta}}_{M L}, \\
& =\sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{2}}+k^{2} \hat{\boldsymbol{\beta}}_{M L}^{\prime} \boldsymbol{\gamma}(\mathbf{\Lambda}+k \mathbf{I})^{-2} \gamma^{\prime} \hat{\boldsymbol{\beta}}_{M L}, \\
& =\sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{2}}+k^{2} \sum_{j} \frac{\alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{2}}, \tag{3.8}
\end{align*}
$$

where $\lambda_{M L_{j}}$ is the $j^{\text {th }}$ eigenvalue of $\mathbf{W}^{\prime} \mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right) \mathbf{W}, \hat{\boldsymbol{\alpha}}=\boldsymbol{\gamma}^{\prime} \hat{\boldsymbol{\beta}}_{M L}$ and $\boldsymbol{\gamma}$ and $\boldsymbol{\Lambda}$ are the eigenvector and the diagonal matrix of the eigenvalues of $\mathbf{W}^{\prime} \mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right) \mathbf{W}$, respectively.

The minimum of (3.8) is unique since the variance is a monotonically decreasing function of k and the squared bias is an monotonically increasing function of k. The iterative Nelder-Mead algorithm one of the popular methods in nonlinear programming (Nelder and Mead, 1965; Baeyens, Herreros and Perán, 2016) is used to search for the value minimizing $\operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right)$ in (3.8). At iteration $t+1, k^{t+1}$ is given by

$$
\begin{equation*}
k^{t+1}=\underset{k}{\arg \min }\left[=\sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{2}}+k^{2} \sum_{j} \frac{\alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{2}}\right] . \tag{3.9}
\end{equation*}
$$

Upon convergence, the ridge parameter k^{t+1} approaches the minimizing value $k_{o p t}$,

$$
\begin{equation*}
k_{o p t}=\underset{k}{\arg \min } \operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right), \tag{3.10}
\end{equation*}
$$

and the proposed parameter $\hat{\boldsymbol{\beta}}_{L R R}\left(k_{\text {opt }}\right)$ can be derived from (3.3) as

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{L R R}\left(k_{o p t}\right)=\left\{\mathbf{W}^{\prime} \mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right) \mathbf{W}+k_{o p t} \mathbf{I}\right\}^{-1} \mathbf{W}^{\prime} \mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right) \mathbf{W} \hat{\boldsymbol{\beta}}_{M L} \tag{3.11}
\end{equation*}
$$

The maximum likelihood estimate ($\hat{\boldsymbol{\beta}}_{M L}$) is obtained using the iteratively reweighted least squares algorithm based on (2.20).

The general iterative algorithm can be summarized as follows:

1) Assume $t=0$ and $k^{t}=0$, and determine an initial LRR estimate of the population parameter vector $\boldsymbol{\beta}_{L R R}\left(k^{t}\right)=\hat{\boldsymbol{\beta}}_{M L}$ and a termination criterion.
2) Compute the eigenvalues λ_{j}^{t} of $\mathbf{W}^{\prime} \mathbf{V}\left(\hat{\boldsymbol{\beta}}_{M L}\right) \mathbf{W}+k^{t} \mathrm{I}$.
3) Compute k^{t+1} in (3.9) by using the Nelder-Mead algorithm.
4) If the termination criterion is satisfied, the $k_{\text {opt }}=k^{t+1}$, compute
$\hat{\boldsymbol{\beta}}_{L R R}\left(k_{\text {opt }}\right)$ in (3.11), and terminate the algorithm; else $t=t+1$ and go to step 2.

3.2 The Bounds of the Ridge Parameter

In this work, the ridge parameter k is determined such that the MSE in (3.7) is minimized. Due to the high nonlinearity of k in $\operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right)$, the optimum value of k is obtained using an iterative algorithm. The following theorem is developed to provide an approximate upper bound of the ridge parameter for the search for $k_{\text {opt }}$.

Theorem 3.1: Let $c=p / \sum_{j} \lambda_{M L_{j}} \alpha_{j}^{2}$. If $k_{\text {opt }}=\arg \min \operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right)$, then

$$
\begin{align*}
& 0<k_{\text {opt }} \leq c\left[2+\frac{f_{2}}{2 f_{1}}\left(1-\sqrt{1+\frac{4 f_{1} f_{3}}{f_{2}^{2}}}\right)\right] \text { if } 0<\frac{\lambda_{M L_{\max }}}{c}<2\left(2^{1 / 3}-1\right), \tag{3.12}\\
& 0<k_{\text {opt }}<c\left(1+\frac{1}{\sqrt{1+\frac{4 f_{1} f_{3}}{f_{4}^{4}}}}\right) \text { if } 2\left(2^{1 / 3}-1\right) \leq \frac{\lambda_{M L_{\max }}}{c}<1.6550, \tag{3.13}\\
& 0<k_{\text {opt }} \leq c+\sqrt{3 c \lambda_{M L_{\max }}} \text { if } \frac{\lambda_{M L_{\max }}}{c} \geq 1.6550, \tag{3.14}
\end{align*}
$$

where

$$
\begin{align*}
& f_{1}=\frac{3 \lambda_{M L_{\max }}}{8 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \tag{3.15}\\
& f_{2}=1+\frac{3 \lambda_{M L_{\max }}}{4 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}, \tag{3.16}\\
& f_{3}=2-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3} \tag{3.17}
\end{align*}
$$

$$
\begin{equation*}
f_{4}=\frac{\lambda_{M L_{\max }}}{4 c}\left[\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}+5\left(\frac{\lambda_{M L_{\max }}}{c}\right)+8\right] . \tag{3.18}
\end{equation*}
$$

Proof. The first derivative of $\operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right)$ in (3.8) with respect to k can be expressed as

$$
\begin{align*}
\frac{\partial M S E\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right)}{\partial k} & =-2 \sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{3}}+2 k \sum_{j} \frac{\alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{2}}-2 \mathrm{k}^{2} \sum_{j} \frac{\alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{3}}, \\
& =-2 \sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{3}}+\sum_{j} \frac{\alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{3}}\left[2 k\left(\lambda_{M L_{j}}+k\right)-2 k^{2}\right], \\
& =-2 \sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{3}}+2 k \sum_{j} \frac{\lambda_{M L_{j}} \alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{3}} . \tag{3.19}
\end{align*}
$$

From (3.19), the sufficient condition that $\operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right)$ is an increasing function of k is defined as

$$
\begin{equation*}
k \sum_{j} \frac{\lambda_{M L_{j}} \alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{3}}>\sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{3}} . \tag{3.20}
\end{equation*}
$$

The upper bound for the right-hand side (RHS) of (3.20) can be approximated as

$$
\begin{equation*}
\sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{3}}<\sum_{j} \frac{\lambda_{M L_{j}}}{k^{3}}=\frac{p}{k^{3}} . \tag{3.21}
\end{equation*}
$$

For the left-hand side (LHS) of (3.20), the $j^{\text {th }}$ element of the diagonal matrix is

$$
\begin{aligned}
\lambda_{M L_{\max }}+k & >\lambda_{M L_{j}}+k, \text { for all } j \text { 's, } \\
\left(\lambda_{M L_{\max }}+k\right)^{3} & >\left(\lambda_{M L_{j}}+k\right)^{3}, \text { for all } j \text { 's, } \\
\frac{1}{\left(\lambda_{M L_{\max }}+k\right)^{3}} & <\frac{1}{\left(\lambda_{M L_{j}}+k\right)^{3}}, \text { for all } j \text { 's, }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{\max }}+k\right)^{3}} & <\frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{3}}, \text { for all } j \text { 's } \\
\frac{\lambda_{M L_{j}} \alpha_{j}^{2}}{\left(\lambda_{M L_{\max }}+k\right)^{3}} & <\frac{\lambda_{M L_{j}} \alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{3}}, \text { for all } j \text { 's. }
\end{aligned}
$$

Therefore, the lower bound for the LHS in (3.20) can be written as

$$
\begin{equation*}
k \sum_{j} \frac{\lambda_{M L_{j}} \alpha_{j}^{2}}{\left(\lambda_{M L_{\max }}+k\right)^{3}}<k \sum_{j} \frac{\lambda_{M L_{j}} \alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{3}} . \tag{3.22}
\end{equation*}
$$

Subsequently, the sufficient condition in (3.20) becomes

$$
\begin{align*}
\frac{p}{k^{3}} & <\frac{k}{\left(\lambda_{M L_{\max }}+k\right)^{3}} \sum_{j} \lambda_{M L_{j}} \alpha_{j}^{2}, \\
\frac{k^{4}}{\left(\lambda_{M L_{\max }}+k\right)^{3}} & >\frac{p}{\sum_{j} \lambda_{M L_{j}} \alpha_{j}^{2}}=c . \tag{3.23}
\end{align*}
$$

Rearranging the inequality in (3.23) can be carried out as follows:

$$
\begin{align*}
k^{4} & >c\left(\lambda_{M L_{\max }}+k\right)^{3}, \\
k^{4 / 3} & >c^{1 / 3}\left(\lambda_{M L_{\max }}+k\right), \\
k^{4 / 3}-c^{1 / 3} k & >c^{1 / 3} \lambda_{M L_{\max }} \\
k\left(k^{1 / 3}-c^{1 / 3}\right) & >c^{1 / 3} \lambda_{M L_{\max }} \tag{3.24}
\end{align*}
$$

This implies that the necessary condition for $\operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right)$ to be an increasing function of k is $k>c$. Let $k=c+\delta$, where $\delta>0$. By replacing k in the terms for c and δ into (3.24), we obtain

$$
\begin{equation*}
(c+\delta)\left[(c+\delta)^{1 / 3}-c^{1 / 3}\right]>c^{1 / 3} \lambda_{M L_{\max }} \tag{3.25}
\end{equation*}
$$

Case: $0<\frac{\delta}{c}<1$. The inequality in (3.25) can be written in term of $\frac{\delta}{c}$ as

$$
\begin{align*}
(c+\delta)\left[(c+\delta)^{1 / 3}-c^{1 / 3}\right] & >c^{1 / 3} \lambda_{M L_{\max }}, \\
c\left(1+\frac{\delta}{c}\right)\left[c^{1 / 3}\left(1+\frac{\delta}{c}\right)^{1 / 3}-c^{1 / 3}\right] & >c^{1 / 3} \lambda_{M L_{\max }}, \\
\left(1+\frac{\delta}{c}\right)\left[\left(1+\frac{\delta}{c}\right)^{1 / 3}-1\right] & >\frac{\lambda_{M L_{\max }}}{c} . \tag{3.26}
\end{align*}
$$

Let $\frac{\delta}{c}=1-\Delta_{1}$. The condition $0<\frac{\delta}{c}<1$ results in $0<\Delta_{1}<1$. We can replace $\frac{\delta}{c}$ in terms of Δ_{1} into (3.26) as

$$
\begin{align*}
\left(1+1-\Delta_{1}\right)\left[\left(1+1-\Delta_{1}\right)^{1 / 3}-1\right] & >\frac{\lambda_{M L_{\max }}}{c} \\
\left(2-\Delta_{1}\right)\left[\left(2-\Delta_{1}\right)^{1 / 3}-1\right] & >\frac{\lambda_{M L_{\max }}}{c}, \\
2\left(1-\frac{\Delta_{1}}{2}\right)\left[2^{1 / 3}\left(1-\frac{\Delta_{1}}{2}\right)^{1 / 3}-1\right] & >\frac{\lambda_{M L_{\max }}}{c}, \\
{\left[2^{1 / 3}\left(1-\frac{\Delta_{1}}{2}\right)^{1 / 3}-1\right] } & >\frac{\lambda_{M L_{\max }}}{2 c\left(1-\frac{\Delta_{1}}{2}\right)} \\
2\left(1-\frac{\Delta_{1}}{2}\right) & >\left[1+\frac{\lambda_{M L_{\max }}}{2 c\left(1-\frac{\Delta_{1}}{2}\right)}\right]^{3} \tag{3.27}
\end{align*}
$$

When considering the RHS of (3.27), its expanded form is

$$
\begin{align*}
R H S & =\left[1+\frac{\lambda_{M L_{\max }}}{2 c\left(1-\frac{\Delta_{1}}{2}\right)}\right]^{3}, \\
& =1+3\left[\frac{\lambda_{M L_{\max }}}{2 c\left(1-\frac{\Delta_{1}}{2}\right)}\right]+3\left[\frac{\lambda_{M L_{\max }}}{2 c\left(1-\frac{\Delta_{1}}{2}\right)}\right]^{2}+\left[\frac{\lambda_{M L_{\max }}}{2 c\left(1-\frac{\Delta_{1}}{2}\right)}\right]^{3}, \\
& =1+\frac{3}{2} \frac{\lambda_{M L_{\max }}}{c}\left(\frac{1}{1-\frac{\Delta_{1}}{2}}\right)+\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}\left(\frac{1}{1-\frac{\Delta_{1}}{2}}\right)^{2}+\frac{1}{8}\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{3}\left(\frac{1}{1-\frac{\Delta_{1}}{2}}\right)^{3}, \\
& =1+\frac{3}{2} \frac{\lambda_{M L_{\max }}}{c}\left(1-\frac{\Delta_{1}}{2}\right)^{-1}+\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}\left(1-\frac{\Delta_{1}}{2}\right)^{-2}+\frac{1}{8}\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{3}\left(1-\frac{\Delta_{1}}{2}\right)^{-3} . \tag{3.28}
\end{align*}
$$

Expanding the Taylor Series of $\left(1-\frac{\Delta_{1}}{2}\right)^{-r}, r=1,2,3$ gives the second order of $\frac{\Delta_{1}}{2}$:

$$
\begin{align*}
& \left(1-\frac{\Delta_{1}}{2}\right)^{-1} \approx 1+\frac{\Delta_{1}}{2}+\left(\frac{\Delta_{1}}{2}\right)^{2}=1+\frac{1}{2} \Delta_{1}+\frac{1}{4} \Delta_{1}^{2} \tag{3.29}\\
& \left(1-\frac{\Delta_{1}}{2}\right)^{-2} \approx 1+2\left(\frac{\Delta_{1}}{2}\right)+3\left(\frac{\Delta_{1}}{2}\right)^{2}=1+\Delta_{1}+\frac{3}{4} \Delta_{1}^{2} \tag{3.30}\\
& \left(1-\frac{\Delta_{1}}{2}\right)^{-3} \approx 1+3\left(\frac{\Delta_{1}}{2}\right)+6\left(\frac{\Delta_{1}}{2}\right)^{2}=1+\frac{3}{2} \Delta_{1}+\frac{3}{2} \Delta_{1}^{2} \tag{3.31}
\end{align*}
$$

Replacing (3.29), (3.30), and (3.31) in (3.28) results in

$$
\begin{aligned}
R H S= & 1+\frac{3}{2} \frac{\lambda_{M L_{\max }}}{c}\left(1+\frac{1}{2} \Delta_{1}+\frac{1}{4} \Delta_{1}^{2}\right)+\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}\left(1+\Delta_{1}+\frac{3}{4} \Delta_{1}^{2}\right) \\
& +\frac{1}{8}\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{3}\left(1+\frac{3}{2} \Delta_{1}+\frac{3}{2} \Delta_{1}^{2}\right), \\
= & 1+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}+\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3} \\
& +\left[\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}+\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}\right] \Delta_{1} \\
& +\left[\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)+\frac{9}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}+\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}\right] \Delta_{1}^{2}, \\
= & \left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}+\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left[1+2\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}+\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\right] \Delta_{1} \\
& +\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left[1+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)+2\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\right] \Delta_{1}^{2}, \\
= & \left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}+\frac{3 \lambda_{M L_{\max }}}{4 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2} \Delta_{1} \\
& +\frac{3 \lambda_{M L_{\max }}}{8 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \Delta_{1}^{2} .
\end{aligned}
$$

The inequality in (3.27) can be expressed as

$$
\begin{aligned}
2\left(1-\frac{\Delta_{1}}{2}\right)> & \left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}+\frac{3 \lambda_{M L_{\max }}}{4 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2} \Delta_{1} \\
& +\frac{3 \lambda_{M L_{\max }}}{8 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \Delta_{1}^{2}
\end{aligned}
$$

$$
\begin{align*}
2-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}> & \Delta_{1}+\frac{3 \lambda_{M L_{\max }}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2} \Delta_{1}}{} \\
& +\frac{3 \lambda_{M L_{\max }}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \Delta_{1}^{2}}{2-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}>} \\
& {\left[1+\frac{3 \lambda_{M L_{\max }}}{4 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\right] \Delta_{1} } \\
& +\frac{3 \lambda_{M L_{\max }}}{8 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \Delta_{1}^{2} . \tag{3.32}
\end{align*}
$$

The inequality in (3.32) becomes

$$
\begin{equation*}
f_{1} \Delta_{1}^{2}+f_{2} \Delta_{1}<f_{3} . \tag{3.33}
\end{equation*}
$$

where f_{1}, f_{2} and f_{3} are defined in (3.15), (3.16) and (3.17) respectively.
The inequality (3.33) can be derived as

$$
\begin{aligned}
\Delta_{1}^{2}+\frac{f_{2}}{f_{1}} \Delta_{1} & <\frac{f_{3}}{f_{1}}, \\
\left(\Delta_{1}+\frac{f_{2}}{2 f_{1}}\right)^{2} & <\frac{f_{2}^{2}}{4 f_{1}^{2}}+\frac{f_{3}}{f_{1}}, \\
\Delta_{1}+\frac{f_{2}}{2 f_{1}} & <\sqrt{\frac{f_{2}^{2}}{4 f_{1}^{2}}+\frac{f_{3}}{f_{1}}}, \\
\Delta_{1} & <\sqrt{\frac{f_{2}^{2}}{4 f_{1}^{2}}+\frac{f_{3}}{f_{1}}-\frac{f_{2}}{2 f_{1}},} \\
\Delta_{1} & <\sqrt{\frac{f_{2}^{2}}{4 f_{1}^{2}}\left(1+\frac{4 f_{1} f_{3}}{f_{2}^{2}}\right)}-\frac{f_{2}}{2 f_{1}} .
\end{aligned}
$$

Thus, the upper bound of Δ_{1} can be written as

$$
\begin{equation*}
\Delta_{1}<\frac{f_{2}}{2 f_{1}}\left(\sqrt{1+\frac{4 f_{1} f_{3}}{f_{2}^{2}}}-1\right) . \tag{3.34}
\end{equation*}
$$

A positive value for f_{3} is required to fulfill the assumption that $\Delta_{1}>0$, which leads to the conditions for the inequality as follows:

$$
\begin{align*}
2-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3} & >0 \\
\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3} & <2 \\
1+\frac{\lambda_{M L_{\max }}}{2 c} & <2^{1 / 3} \\
\frac{\lambda_{M L_{\max }}}{c} & <2\left(2^{1 / 3}-1\right) \tag{3.35}
\end{align*}
$$

From the definition of Δ_{1} and the inequality in (3.34), we can obtain

$$
\begin{aligned}
& \frac{\delta}{c}=1-\Delta_{1}, \\
& \frac{\delta}{c}=1-\frac{f_{2}}{2 f_{1}}\left(\sqrt{1+\frac{4 f_{1} f_{3}}{f_{2}^{2}}}-1\right), \\
& \delta=c\left[1-\frac{f_{2}}{2 f_{1}}\left(\sqrt{1+\frac{4 f_{1} f_{3}}{f_{2}^{2}}}-1\right)\right] .
\end{aligned}
$$

Consequently, the upper bound of $k, k_{u b}$, to search for the optimal $k_{\text {opt }}$ is given by

$$
\begin{align*}
k_{u b} & =c+\delta, \\
& =c+c\left[1-\frac{f_{2}}{2 f_{1}}\left(\sqrt{1+\frac{4 f_{1} f_{3}}{f_{2}^{2}}}-1\right)\right], \\
& =c\left[2-\frac{f_{2}}{2 f_{1}}\left(\sqrt{1+\frac{4 f_{1} f_{3}}{f_{2}^{2}}}-1\right)\right], \\
& =c\left[2+\frac{f_{2}}{2 f_{1}}\left(1-\sqrt{1+\frac{4 f_{1} f_{3}}{f_{2}^{2}}}\right)\right] . \tag{3.36}
\end{align*}
$$

which is for $0<\frac{\lambda_{M L_{\max }}}{c}<2\left(2^{1 / 3}-1\right)$. This is because

Case: $\frac{\delta}{c}>1$. Inequality (3.25) can be rearranged in terms of $\frac{c}{\delta}<1$ as

$$
\begin{aligned}
(c+\delta)\left[(c+\delta)^{1 / 3}-c^{1 / 3}\right] & >c^{1 / 3} \lambda_{M L_{\max }} \\
\delta\left(1+\frac{c}{\delta}\right)\left[\delta^{1 / 3}\left(1+\frac{c}{\delta}\right)^{1 / 3}-c^{1 / 3}\right] & >c^{1 / 3} \lambda_{M L_{\max }} \\
\delta^{1 / 3}\left(1+\frac{c}{\delta}\right)^{1 / 3}-c^{1 / 3} & >\frac{c^{1 / 3} \lambda_{M L_{\max }}}{\delta\left(1+\frac{c}{\delta}\right)} \\
\delta^{1 / 3}\left(1+\frac{c}{\delta}\right)^{1 / 3} & >c^{1 / 3}+\frac{c^{1 / 3} \lambda_{M L_{\max }}}{\delta\left(1+\frac{c}{\delta}\right)} \\
\left(1+\frac{c}{\delta}\right)^{1 / 3} & >\left(\frac{c}{\delta}\right)^{1 / 3}\left[1+\frac{\lambda_{M L_{\max }}}{\delta\left(1+\frac{c}{\delta}\right)}\right]
\end{aligned}
$$

$$
\begin{align*}
& 1+\frac{c}{\delta}>\frac{c}{\delta}\left[1+\frac{\lambda_{M L_{\max }}}{\delta\left(1+\frac{c}{\delta}\right)}\right]^{3}, \tag{3.37}\\
& 1+\frac{c}{\delta}>\frac{c}{\delta}\left[1+\frac{\left(\lambda_{M L_{\max }+c}^{\delta}\right.}{\delta}\right]^{3} \cdot \frac{1}{\left(1+\frac{c}{\delta}\right)^{3}} \tag{3.38}\\
& 1+\frac{c}{\delta}>\frac{c}{\delta}\left[1+\frac{c}{\delta}\left(\frac{\lambda_{M L_{\max }}}{c}+1\right)\right]^{3} \cdot \frac{1}{\left(1+\frac{c}{\delta}\right)^{3}}
\end{align*}
$$

Expanding the Taylor Series of $\left(1+\frac{c}{\delta}\right)^{-3}$ to the second order of $\frac{c}{\delta}$ gives

$$
\begin{aligned}
1+\frac{c}{\delta}> & \frac{c}{\delta}\left[\begin{array}{l}
\left.1+\frac{3 c}{\delta}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)+3\left(\frac{c}{\delta}\right)^{2}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{2}\right]\left[1-\frac{3 c}{\delta}+6\left(\frac{c}{\delta}\right)^{2}\right], \\
+\left(\frac{c}{\delta}\right)^{3}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{3}
\end{array}\right] \\
> & {\left[\begin{array}{l}
1+\frac{c}{\delta}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)+3\left(\frac{c}{\delta}\right)^{2}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{2}+\left(\frac{c}{\delta}\right)^{3}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{3} \\
-\frac{3 c}{\delta}-9\left(\frac{c}{\delta}\right)^{2}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{2}-9\left(\frac{c}{\delta}\right)^{3}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{2} \\
-3\left(\frac{c}{\delta}\right)^{4}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{3}+6\left(\frac{c}{\delta}\right)^{2}+18\left(\frac{c}{\delta}\right)^{3}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \\
+18\left(\frac{c}{\delta}\right)^{4}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{2}+6\left(\frac{c}{\delta}\right)^{5}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{3}
\end{array}\right], }
\end{aligned}
$$

$$
\begin{aligned}
1 & >\frac{c}{\delta}\left[\begin{array}{l}
\left.\frac{3 c}{\delta}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)-\frac{3 c}{\delta}-3\left(\frac{c}{\delta}\right)^{2}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)\right] \\
\left.+6\left(\frac{c}{\delta}\right)^{2}+3\left(\frac{c}{\delta}\right)^{2}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)^{2}\right] \\
\end{array}>\frac{c}{\delta}\left[\frac{3 c}{\delta}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)-\frac{3 c}{\delta}\right]\right. \\
& >3\left(\frac{c}{\delta}\right)^{2}\left[1+\frac{\lambda_{M L_{\max }}}{c}-1\right] \\
& >\frac{3 c \lambda_{M L_{\max }}}{\delta^{2}} \\
\delta^{2} & >3 c \lambda_{M L_{\max }} \\
\delta & >\sqrt{3 c \lambda_{M L_{\max }}}
\end{aligned}
$$

Therefore, $\quad \delta>\sqrt{3 c \lambda_{M L_{\max }}}, \quad$ for $\frac{c}{\delta}<1$.

The upper bound of k to search for the optimal $k_{\text {opt }}$ in the case of $\frac{\delta}{c} \gg 1$ is equal to

$$
\begin{equation*}
k_{u b} \approx c+\sqrt{3 c \lambda_{M L_{\max }}} . \tag{3.40}
\end{equation*}
$$

Note that the approximation of the upper bound of k in (3.34) may be invalid when $\frac{\delta}{c}$ is slightly greater than 1 . Consider the case where $\frac{c}{\delta}=1-\Delta_{2}$, in which Δ_{2} is slightly greater than zero, then $\frac{1}{\delta}=\frac{1-\Delta_{2}}{c}$. If substituting $\frac{c}{\delta}$ in terms of Δ_{2} in (3.37), we can show that

$$
\begin{align*}
1+\left(1-\Delta_{2}\right) & >c\left(\frac{1-\Delta_{2}}{c}\right)\left[1+\frac{\lambda_{M L_{\max }}}{\left(1+1-\Delta_{2}\right)}\left(\frac{1-\Delta_{2}}{c}\right)\right]^{3} \\
2-\Delta_{2} & >\left(1-\Delta_{2}\right)\left[1+\frac{\lambda_{M L_{\max }}\left(1-\Delta_{2}\right)}{c\left(2-\Delta_{2}\right)}\right]^{3} \\
2-\Delta_{2} & >\left(1-\Delta_{2}\right)\left[1+\frac{\lambda_{M L_{\max }\left(1-\Delta_{2}\right)}}{2 c\left(1-\frac{\Delta_{2}}{2}\right)}\right]^{3} \tag{3.41}
\end{align*}
$$

Considering the RHS of Inequality (3.41):

$$
\begin{aligned}
& R H S=\left(1-\Delta_{2}\right)\left[1+\frac{\lambda_{M L_{\max }}\left(1-\Delta_{2}\right)}{2 c\left(1-\frac{\Delta_{2}}{2}\right)}\right]^{3}, \\
& =\left(1-\Delta_{2}\right)\left[1+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right) \frac{\left(1-\Delta_{2}\right)}{\left(1-\frac{\Delta_{2}}{2}\right)}+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2} \frac{\left(1-\Delta_{2}\right)^{2}}{\left(1-\frac{\Delta_{2}}{2}\right)^{2}}+\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3} \frac{\left(1-\Delta_{2}\right)^{3}}{\left(1-\frac{\Delta_{2}}{2}\right)^{3}}\right] .
\end{aligned}
$$

Expanding the Taylor Series of $\left(1-\frac{\Delta_{2}}{2}\right)^{-r}, r=1,2,3$, to the second order of Δ_{2} gives

$$
\begin{align*}
& R H S=\left(1-\Delta_{2}\right)\left[\begin{array}{l}
1+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1-\Delta_{2}\right)\left(1+\frac{1}{2} \Delta_{2}+\frac{1}{4} \Delta_{2}^{2}\right) \\
+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\left(1-\Delta_{2}\right)^{2}\left(1+\Delta_{2}+\frac{3}{4} \Delta_{2}^{2}\right) \\
+\left(\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)^{3}\left(1-\Delta_{2}\right)^{3}\left(1+\frac{3}{2} \Delta_{2}+\frac{3}{2} \Delta_{2}^{2}\right)
\end{array}\right], \\
& R H S=\left(1-\Delta_{2}\right)\left[\begin{array}{l}
1+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{1}{2} \Delta_{2}+\frac{1}{4} \Delta_{2}^{2}-\Delta_{2}-\frac{1}{2} \Delta_{2}^{2}-\frac{1}{4} \Delta_{2}^{3}\right) \\
+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\left(1-2 \Delta_{2}+\Delta_{2}^{2}\right)\left(1+\Delta_{2}+\frac{3}{4} \Delta_{2}^{2}\right) \\
+\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}\left(1-3 \Delta_{2}+3 \Delta_{2}^{2}-\Delta_{2}^{2}\right)\left(1+\frac{3}{2} \Delta_{2}+\frac{3}{2} \Delta_{2}^{2}\right)
\end{array}\right], \\
& =\left(1-\Delta_{2}\right)\left[\begin{array}{l}
1+3\left(\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)\left(1-\frac{1}{2} \Delta_{2}-\frac{1}{4} \Delta_{2}^{2}-\frac{1}{4} \Delta_{2}^{3}\right) \\
+3\left(\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)^{2}\left(1-\Delta_{2}-\frac{1}{4} \Delta_{2}^{2}-\frac{1}{2} \Delta_{2}^{3}+\frac{3}{4} \Delta_{2}^{4}\right) \\
+\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}\left(1-\frac{3}{2} \Delta_{2}-\Delta_{2}^{3}+3 \Delta_{2}^{4}-\frac{3}{2} \Delta_{2}^{5}\right)
\end{array}\right], \\
& =\left(1-\Delta_{2}\right)\left[\begin{array}{l}
1+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}+\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3} \\
+\Delta_{2}^{2}\left[-\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)-3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}-\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)-\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}\right] \\
\\
+\Delta_{2}^{3}\left[-\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)-\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}-\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}\right] \\
\\
+\Delta_{2}^{4}\left[\frac{9}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}+3\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}\right]-\frac{3}{2} \Delta_{2}^{5}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}
\end{array}\right] . \tag{3.42}
\end{align*}
$$

Abandoning the higher order than the second order of Δ_{2} in (3.42) arrives at

$$
\begin{aligned}
& R H S \approx\left(1-\Delta_{2}\right) \\
&\left.\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}-\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left[1+2\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)+\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\right] \Delta_{2}\right] \\
&=\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left[1+\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\right] \Delta_{2}^{2} \\
&-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}-\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2} \Delta_{2}+\frac{3}{2}\left(\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right) \Delta_{2}^{2} \Delta_{2}^{2}+\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right) \Delta_{2}^{3},\right. \\
& \approx\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\left[\frac{3}{2}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)+\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\right] \Delta_{2} \\
&\left.+\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\right)\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left[2\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)-1\right] \Delta_{2}^{2}, \\
&=\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \Delta_{2} \\
&+\frac{3}{4}\left(\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \Delta_{2}^{2} .
\end{aligned}
$$

Therefore, Inequality (3.41) can be rearranged as

$$
\begin{align*}
& 2-\Delta_{2}>\left(1+\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)^{3}-\left(1+\frac{\lambda_{M L_{\text {max }}}}{c}\right)\left(1+\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)^{2} \Delta_{2} \\
& +\frac{3}{8} \frac{\lambda_{M L_{\text {max }}}}{c}\left(1+\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\text {max }}}}{c}\right) \Delta_{2}^{2}, \\
& 2-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}>\frac{3}{8} \frac{\lambda_{M L_{\max }}}{c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \Delta_{2}^{2} \\
& -\left[\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{2}-1\right] \Delta_{2}, \\
& 2-\left(1+\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)^{3}>\frac{3}{8} \frac{\lambda_{M L_{\text {max }}}}{c}\left(1+\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\text {max }}}}{c}\right) \Delta_{2}^{2} \\
& -\left[\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}+\frac{\lambda_{M L_{\max }}^{2}}{4 c^{2}}\right)-1\right] \Delta_{2}, \\
& 2-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}>\frac{3}{8} \frac{\lambda_{M L_{\max }}}{c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\text {max }}}}{c}\right) \Delta_{2}^{2} \\
& -\left[\left(1+\frac{\lambda_{M L_{\text {max }}}}{c}+\frac{\lambda_{M L_{\text {max }}}}{c}+\frac{\lambda_{M L_{\text {max }}}^{2}}{c^{2}}+\frac{\lambda_{M L_{\text {max }}}^{2}}{4 c^{2}}+\frac{\lambda_{M L_{\text {max }}}^{3}}{4 c^{3}}\right)-1\right] \Delta_{2}, \\
& 2-\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)^{3}>\frac{3}{8} \frac{\lambda_{M L_{\max }}}{c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right) \Delta_{2}^{2} \\
& -\left[\frac{2 \lambda_{M L_{\max }}}{c}+\frac{5}{4}\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}+\frac{\lambda_{M L_{\max }}^{3}}{4 c^{3}}\right] \Delta_{2}, \\
& 2-\left(1+\frac{\lambda_{M L_{\text {max }}}}{2 c}\right)^{3}>\frac{3}{8} \frac{\lambda_{M L_{\text {max }}}}{c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\text {max }}}}{c}\right) \Delta_{2}^{2} \\
& -\frac{\lambda_{M L_{\max }}}{4 c}\left[\left(\frac{\lambda_{M L_{\text {max }}}}{c}\right)^{2}+5\left(\frac{\lambda_{M L_{\max }}}{c}\right)+8\right] \Delta_{2} . \tag{3.43}
\end{align*}
$$

The inequality in (3.43) becomes

$$
\begin{equation*}
f_{1} \Delta_{2}^{2}-f_{4} \Delta_{2}<f_{3}, \tag{3.44}
\end{equation*}
$$

where f_{1}, f_{3}, and f_{4} are defined in (3.15), (3.17), and (3.18), respectively. Inequality (3.44) can be derived as

$$
\begin{align*}
f_{1} \Delta_{2}^{2}-f_{4} \Delta_{2} & <f_{3} \\
\Delta_{2}^{2}-\frac{f_{4}}{f_{1}} \Delta_{2} & <\frac{f_{3}}{f_{1}} \\
\left(\Delta_{2}-\frac{f_{4}}{2 f_{1}}\right)^{2} & <\frac{f_{4}^{2}}{4 f_{1}^{2}}+\frac{f_{3}}{f_{1}}, \\
\left(\Delta_{2}-\frac{f_{4}}{2 f_{1}}\right)^{2} & <\frac{f_{4}^{2}}{4 f_{1}^{2}}\left(1+\frac{f_{1} f_{3}}{f_{4}^{2}}\right) \\
\Delta_{2}-\frac{f_{4}}{2 f_{1}} & < \pm \frac{f_{4}}{2 f_{1}} \sqrt{1+\frac{f_{1} f_{3}}{f_{4}^{2}}} \\
\Delta_{2} & <\frac{f_{4}}{2 f_{1}} \pm \frac{f_{4}}{2 f_{1}} \sqrt{1+\frac{f_{1} f_{3}}{f_{4}^{2}}} \\
\Delta_{2} & <\frac{f_{4}}{2 f_{1}}\left(1 \pm \sqrt{1+\frac{f_{1} f_{3}}{f_{4}^{2}}}\right) \tag{3.45}
\end{align*}
$$

From the definition of Δ_{2} and the inequality (3.45), two cases can be considered.

First, in the case where, $\Delta_{2}<\frac{f_{4}}{2 f_{1}}\left(1+\sqrt{1+\frac{f_{1} f_{3}}{f_{4}^{2}}}\right)$ and $\frac{f_{4}}{2 f_{1}}\left(1+\sqrt{1+\frac{f_{1} f_{3}}{f_{4}^{2}}}\right)>0$, these conditions are invalid.

Second, in the case where $\Delta_{2}<\frac{f_{4}}{2 f_{1}}\left(1-\sqrt{1+\frac{f_{1} f_{3}}{f_{4}^{2}}}\right)$ and $\frac{f_{4}}{2 f_{1}}\left(1-\sqrt{1+\frac{f_{1} f_{3}}{f_{4}^{2}}}\right)>0$, obviously $1+\frac{f_{1} f_{3}}{f_{4}^{2}}>0$, then $f_{3}>-\frac{f_{4}^{2}}{4 f_{1}}$. Consider

$$
\begin{aligned}
\frac{f_{4}}{2 f_{1}} & =\frac{\frac{\lambda_{M L_{\max }}}{4 c}\left[\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}+5\left(\frac{\lambda_{M L_{\max }}}{c}\right)+8\right]}{2 \cdot \frac{3 \lambda_{M L_{\max }}}{8 c}\left(1+\frac{\lambda_{M L_{\max }}}{2 c}\right)\left(1+\frac{\lambda_{M L_{\max }}}{c}\right)} \\
\frac{f_{4}}{2 f_{1}} & =\frac{\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}+5\left(\frac{\lambda_{M L_{\max }}}{c}\right)+8}{3\left(1+\frac{3 \lambda_{M L_{\max }}}{2 c}+\frac{\lambda_{M L_{\max }}^{2}}{2 c^{2}}\right)} \\
& =\frac{2\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}+10\left(\frac{\lambda_{M L_{\max }}}{c}\right)+16}{3\left(\frac{\lambda_{M L_{\max }}}{c}\right)^{2}+9\left(\frac{\lambda_{M L_{\max }}}{c}\right)+6}>1 .
\end{aligned}
$$

Thus, it can be concluded that

$$
\begin{equation*}
0<\Delta_{2}<\frac{f_{4}}{2 f_{1}}\left(1-\sqrt{1+\frac{4 f_{1} f_{3}}{f_{4}^{2}}}\right) \tag{3.46}
\end{equation*}
$$

When f_{3} approaches zero from the negative direction, Δ_{2} approaches zero from the opposite direction. On the other hand, from (3.17), Δ_{2} approaches zero when $\frac{\lambda_{M L_{\text {max }}}}{c} \rightarrow 2\left(2^{1 / 3}-1\right)$. In this case, the upper bound of k to search for the optimal $k_{o p t}$ is defined as

$$
\begin{equation*}
k_{u b} \approx c \frac{2-\frac{f_{4}}{2 f_{1}}\left(1-\sqrt{1+\frac{4 f_{1} f_{3}}{f_{4}^{2}}}\right)}{1-\frac{f_{4}}{2 f_{1}}\left(1-\sqrt{1+\frac{4 f_{1} f_{3}}{f_{4}^{2}}}\right)} . \tag{3.47}
\end{equation*}
$$

From (3.35) and (3.47), we find that the upper bound in (3.47) is less than the one in (3.35) for $2\left(2^{1 / 3}-1\right)<\frac{\lambda_{M L_{\max }}}{c}<1.6550$, which corresponds to $1<\frac{\delta}{c}<3.5719$, but is greater than one in (3.35) for $\frac{\lambda_{M L_{\max }}}{c}>1.6550$ or $\frac{\delta}{c}>3.5719$, as shown in Figure 3.1. Therefore, $2\left(2^{1 / 3}-1\right)<\frac{\lambda_{M L_{\max }}}{c}<1.6550$, the upper bound of k in (3.47), is used to search for the optimal $k_{\text {opt }}$; otherwise, the upper bound of k in (3.35) is used instead.

Figure 3.1 Comparison of $\frac{k_{u b}}{c}$ in (3.35) and (3.47) as a function of $\frac{\delta}{c}$.

CHAPTER 4

SIMULATION STUDY

The main focus of this work is to study the effect of multicollinearity on ML and LRR estimators. Therefore, a simulation study was conducted to investigate the efficiency of the proposed ridge estimator and compare it with seven well-known ridge parameter estimators. Since $\operatorname{MSE}\left(k \mid \hat{\boldsymbol{\beta}}_{M L}\right)$ is a function of one parameter only, the iterative Nelder-Mead (1965) algorithm was used to search for $k_{\text {opt }}$. Afterward, the capability of the proposed estimator $\left(k_{\text {opt }}\right)$ and the other ridge regression estimator were compared via their MSE. The details and results of the simulation study are contained in Sections $4.1-4.2$. Moreover, results with a real-life data example are presented in Section 4.3.

4.1 Details of the Simulation Study

Each explanatory variable ($\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}$) was generated for $10,000,000$ observations using a uniform distribution. The relevant explanatory variables $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}$ were in the form of $\mathbf{x}_{1} \sim U(10,18), \mathbf{x}_{2} \sim U(15,40), \mathbf{x}_{3} \sim U(30,50)$, $\mathbf{x}_{4} \sim U(2,6)$ and $\mathbf{x}_{5} \sim U(0.5,1.5)$. Correlated explanatory variable data was created by applying Spearman's correlation. The process of simulation was as follows:

1) Given the desired correlation matrix \mathbf{R}^{S}, compute the $j^{\text {th }}$ element in the adjusted correlation matrix $\mathbf{R}^{\text {adj }}$ (Hotelling and Pabst, 1936) as

$$
\begin{equation*}
r_{i j}^{a d j}=2 \sin \left(\frac{\pi r_{i j}^{S}}{6}\right) \tag{4.1}
\end{equation*}
$$

2) Perform the Cholesky decomposition of the adjusted correlation matrix as

$$
\begin{equation*}
\mathbf{R}^{a d j}=\mathbf{L} \mathbf{L}^{\prime} \tag{4.2}
\end{equation*}
$$

where \mathbf{L} is a lower triangular matrix.
3) Generate correlated standard normal random numbers \mathbf{r}_{c} as

$$
\begin{equation*}
\mathbf{r}_{c}=\mathbf{L r} \tag{4.3}
\end{equation*}
$$

where \mathbf{r} comprises the standard normal random numbers.
4) Create the correlated uniform random numbers as

$$
\begin{equation*}
\mathbf{u}=(\mathbf{b}-\mathbf{a}) F\left(\mathbf{r}_{c}\right)+\mathbf{a} \tag{4.4}
\end{equation*}
$$

where \mathbf{a} and \mathbf{b} are the lower and upper bound vectors of the uniform numbers.
Thus, theoretical correlation matrices of the explanatory variables were created for two cases as follows:

First, for three explanatory variables:

$$
\mathbf{R}^{S}=\left[\begin{array}{ccc}
1 & \rho_{12} & 0 \\
\rho_{12} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { where } \rho_{12}=0.90,0.95,0.99
$$

Second, for five explanatory variables:

$$
\mathbf{R}^{S}=\left[\begin{array}{ccccc}
1 & \rho_{12} & 0 & 0 & 0 \\
\rho_{12} & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & \rho_{34} & 0 \\
0 & 0 & \rho_{34} & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

> where i) $\rho_{12}=0.90$ and $\rho_{34}=0.90$
> ii) $\rho_{12}=0.99$ and $\rho_{34}=0.90$,
> and \quad iii) $\rho_{12}=0.99$ and $\rho_{34}=0.99$.

Samples with sample size (n) 100, 200, 500, and 1,000 were randomly selected from the population using a simple random sampling method comprising 500 replications. The explanatory variables $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}$ for each dataset were then standardized by using unit length scaling as $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}, \mathbf{w}_{5}$. The parameter values of $\boldsymbol{\beta}$ were set as $\beta_{0}=0.3, \beta_{1}=2, \beta_{2}=1, \beta_{3}=-1.5 \beta_{4}=2.5$, and $\beta_{5}=-1.2$. For $\boldsymbol{\beta}$, the dependent variable y_{i} was generated such that it was Bernoulli distributed with the probability in (2.8). After generating \mathbf{X} and $\mathbf{y}, \hat{\boldsymbol{\beta}}_{M L}$ was computed by using the SAS 9.4 logistic regression program (PROC LOGISTIC). This method was repeated to estimate the ridge parameter for each method.

4.2 The Results of the Simulation Study

In this section, the results of the simulation study are presented. The estimators were compared based on the MSE criterion. The performance of the logistic ridge estimator in (3.10) was evaluated through the MSE in Equation (3.7) directly:

$$
\begin{equation*}
M S E=\sum_{j} \frac{\lambda_{M L_{j}}}{\left(\lambda_{M L_{j}}+k\right)^{2}}+k^{2} \sum_{j} \frac{\alpha_{j}^{2}}{\left(\lambda_{M L_{j}}+k\right)^{2}} . \tag{4.5}
\end{equation*}
$$

Moreover, the MSE of each LRR estimator will be compared to the MSE of MLE and be presented as relative efficiency (RE):

$$
\begin{equation*}
R E=\frac{M S E(M L)}{M S E(L R R)} \times 100 . \tag{4.6}
\end{equation*}
$$

In addition, the deviance was used as a goodness of fit criterion by considering the error component of the fitted logistic regression model and its aggregate statistics. It is defined as

$$
\begin{equation*}
D E V=\sum_{i=1}^{n} d_{i}^{2} \tag{4.7}
\end{equation*}
$$

where the deviance residuals are $d_{i}=\sqrt{2\left|\ln \left(\pi_{i}(\hat{\boldsymbol{\beta}})\right)\right|}$ for $y_{i}=1 \quad$ and $d_{i}=\sqrt{2\left|\ln \left(1-\pi_{i}(\hat{\boldsymbol{\beta}})\right)\right|}$ for $y_{i}=0$ (Marx and Smith, 1990; Hosmer, Taber and Lemeshow, 1991).

The results summarized from 500 replications in each simulation cases are shown in Appendix A. The ridge parameters in Appendix A are the medians since the estimates are highly skewed to the right. The medians of seven ridge parameters in Table 4.1 and 4.2 decrease rapidly from the order of hundredths when the correlation coefficient is 0.90 to the order of thousandths when the correlation coefficient increases to 0.99 . In some simulation cases, the ridge parameters are greater than unity (see details in Appendix B and C). From the simulation results in Appendix A, it can be concluded that the relative efficiency of the proposed estimator, $k_{\text {opt }}$, with respect to the ML estimator in both cases of three and five explanatory variables is higher than other six well-known estimators in all simulation cases. The relative efficiencies of the proposed estimator, $k_{\text {opt }}$, and other six well-known estimators are summarized in Table 4.1 and 4.2 in the case of three and five explanatory variables respectively. Among the top three highest efficient estimators are $k_{o p t}, k_{S R W 1}$ and $k_{H K B}$. The ridge parameter decreases as the degree of multicollinearity increases and, as expected, the ridge parameter is rather stable when the sample size increases. It can be seen from the tables in Appendix A that the deviance of the LRR model is only slightly higher than the deviance of the ML model. The MSEs of the estimated coefficients of the correlated variables in the LRR models, except the LRR model associated with $k_{G M}$, decreases significantly from the ML case. It should be noted that the efficiency of $k_{G M}$ is lower than the ML estimator
in some simulation data sets when the multicollinearity is severe. This is the case of over penalization with the high value of ridge parameter.

The distributions of ridge parameters and $k_{u b}$ are shown in Appendix B and Appendix C. It can be seen that the distributions are very skewed to the right with, in most cases, the maximum value is much greater than unity and the median is much less than unity. The distribution of $k_{u b}$ is not skewed since the mean is approximately equal to the median in all cases as shown in Table 4.3 and 4.4. The upper-bound $k_{u b}$ increases as the sample size increases but is rather stable as the degree of multicollinearity increases.

Table 4.1 The Relative Efficiencies of $k_{\text {opt }}, k_{H K}, k_{H K B}, k_{S R W 1}, k_{S R W 2}, k_{G M}$ and $k_{W A}$ in the Case of Three Explanatory Variables

Sample size	$\rho=0.90$		$\rho=0.95$		$\rho=0.99$	
	$k_{\text {opt }}$	RE	$k_{\text {opt }}$	RE	$k_{\text {opt }}$	RE
100	0.0474	225.80	0.0240	252.12	0.0051	269.98
200	0.0684	253.14	0.0254	259.37	0.0049	273.26
500	0.0570	243.34	0.0270	255.50	0.0053	308.65
1000	0.0618	246.26	0.0240	252.38	0.0050	278.42
	$k_{H K}$	RE	$k_{H K}$	RE	$k_{H K}$	RE
100	0.0150	189.46	0.0096	216.64	0.0022	240.20
200	0.0196	211.49	0.0111	227.39	0.0023	246.06
500	0.0195	208.20	0.0123	229.65	0.0026	277.29
1000	0.0200	211.57	0.0110	225.19	0.0025	255.35
	$k_{H K B}$	RE	$k_{\text {HKB }}$	RE	$k_{H K B}$	RE
100	0.0405	218.28	0.0290	243.22	0.0083	256.41
200	0.0561	243.45	0.0346	247.62	0.0085	256.40
500	0.0542	232.80	0.0365	241.94	0.0099	287.87
1000	0.0554	235.17	0.0326	238.39	0.0093	256.62
	$k_{S R W 1}$	RE	$k_{\text {SRW1 }}$	RE	$k_{\text {SRW1 }}$	RE
100	0.0358	221.03	0.0217	249.54	0.0050	269.73
200	0.0438	245.86	0.0235	257.06	0.0049	273.03
500	0.0409	236.56	0.0252	253.52	0.0053	308.56
1000	0.0408	239.74	0.0225	249.77	0.0050	278.17
	$k_{S R W 2}$	RE	$k_{S R W 2}$	RE	$k_{S R W 2}$	RE
100	0.0943	185.34	0.0678	197.14	0.0190	195.83
200	0.1219	210.64	0.0744	202.28	0.0188	199.30
500	0.1063	201.28	0.0727	199.66	0.0198	248.75
1000	0.1117	202.43	0.0660	196.89	0.0183	204.02
	$k_{G M}$	RE	$k_{G M}$	RE	$k_{G M}$	RE
100	0.2329	108.88	0.1971	116.17	0.1406	95.91
200	0.2868	132.99	0.2331	117.13	0.1516	99.47
500	0.3165	125.05	0.2819	112.46	0.1632	192.46
1000	0.3136	126.67	0.2388	110.82	0.1635	102.36
	$k_{W A}$	RE	$k_{W A}$	RE	$k_{W A}$	RE
100	0.2449	125.96	0.1640	139.00	0.0433	132.03
200	0.3189	147.61	0.1794	141.48	0.0417	135.80
500	0.2781	141.35	0.1814	139.23	0.0446	214.53
1000	0.3125	142.34	0.1646	136.53	0.0415	139.32

Table 4.2 The Relative Efficiencies of $k_{\text {opt }}, k_{H K}, k_{H K B}, k_{S R W 1}, k_{S R W 2}, k_{G M}$ and $k_{W A}$ in the Case of Five Explanatory Variables

Sample size	$\rho_{12}=0.90, \rho_{34}=0.90$		$\rho_{12}=0.99, \rho_{34}=0.90$		$\rho_{12}=0.99, \rho_{34}=0.99$	
	$k_{\text {opt }}$	RE	$k_{\text {opt }}$	RE	$k_{\text {opt }}$	RE
100	0.0247	201.61	0.0052	247.35	0.0027	227.47
200	0.0322	211.30	0.0047	240.18	0.0030	234.79
500	0.0333	212.52	0.0059	256.07	0.0031	244.74
1000	0.0317	217.79	0.0053	246.25	0.0033	234.39
	$k_{H K}$	$\boldsymbol{R E}$	$k_{H K}$	RE	$k_{H K}$	RE
100	0.0059	157.33	0.0016	209.96	0.0007	177.35
200	0.0085	165.41	0.0017	209.63	0.0008	177.29
500	0.0088	169.47	0.0023	227.31	0.0009	187.77
1000	0.0092	172.97	0.0021	217.67	0.0009	182.06
	$k_{\text {HKB }}$	RE	$k_{\text {HKB }}$	RE	$k_{\text {HKB }}$	RE
100	0.0235	198.61	0.0074	225.56	0.0033	224.15
200	0.0332	208.50	0.0082	214.32	0.0035	232.77
500	0.0372	209.39	0.0110	225.47	0.0039	241.69
1000	0.0359	214.97	0.0100	216.89	0.0042	230.73
	$k_{S R W 1}$	RE	$k_{S R W 1}$	RE	$k_{S R W 1}$	RE
100	0.0144	191.45	0.0041	244.74	0.0017	217.92
200	0.0188	199.39	0.0039	237.61	0.0019	223.67
500	0.0183	200.13	0.0049	253.50	0.0020	232.68
1000	0.0194	205.31	0.0045	243.60	0.0020	222.52
	$k_{S R W 2}$	RE	$k_{\text {SRW } 2}$	RE	$k_{\text {SRW2 }}$	RE
100	0.0578	170.16	0.0186	171.37	0.0078	180.14
200	0.0732	181.84	0.0186	165.37	0.0089	187.79
500	0.0781	182.74	0.0231	178.84	0.0093	197.60
1000	0.0753	187.89	0.0212	170.54	0.0095	188.46
	$k_{G M}$	RE	$k_{G M}$	RE	$k_{G M}$	RE
100	0.1756	106.15	0.1102	97.00	0.0842	95.88
200	0.2147	117.02	0.1390	96.74	0.0655	103.66
500	0.2588	114.72	0.1769	105.54	0.0971	110.20
1000	0.2350	120.92	0.1456	97.61	0.0952	101.06
	$k_{W A}$	RE	$k_{W A}$	RE	$k_{W A}$	RE
100	0.1533	118.13	0.0443	122.14	0.0197	126.26
200	0.1904	129.67	0.0458	120.35	0.0214	132.41
500	0.2013	130.65	0.0545	131.44	0.0227	141.62
1000	0.1953	132.86	0.0513	122.57	0.0233	131.96

Table 4.3 The Mean and Median of $k_{u b}$ in the Case of Three Explanatory Variables

Sample	$\rho=0.90$		$\rho=0.95$		$\rho=0.99$	
Size	mean	median	mean	median	mean	median
100	6.8624	6.5188	6.9255	6.6553	6.9561	6.6929
200	8.8410	8.4438	8.7374	8.3725	8.6410	8.3298
500	11.7957	11.6883	11.8902	11.7225	11.7974	11.5859
1000	11.5886	11.6508	11.4886	11.4834	11.5503	11.5986

Table 4.4 The Mean and Median of $k_{u b}$ in the Case of Five Explanatory Variables

Sample	$\rho_{12}=0.90, \rho_{34}=0.90$		$\rho_{12}=0.99, \rho_{34}=0.90$		$\rho_{12}=0.99, \rho_{34}=0.99$	
Size	mean	median	mean	median	mean	median
100	7.0166	6.8764	6.9464	6.7896	7.1101	6.9007
200	9.2462	9.0394	9.2953	9.0181	7.1033	7.0632
500	12.8172	12.6166	12.9257	12.7355	9.1942	9.1594
1000	12.2826	12.2581	12.2817	12.3705	10.5164	10.5190

4.3 A Real-Life Data Example

The Lee cancer remission dataset (Lee, 1974; Marx, 1988) taken from SAS, the SUGI Supplementary Guide (Hastings, 1986), was used to demonstrate the efficacy of $k_{\text {opt }}$. The binary response was 1 if a patient went into complete cancer remission and 0 otherwise. The explanatory variables are cell of the marrow clot section (CELL), smear differential percentage of blasts (SMEAR), percentage of absolute marrow leukemia cell infiltrate (INFIL), percentage labeling index of the bone marrow leukemia cells (LI), and the maximum temperature ahead of treatment (TEMP). There were 27 patients in this study. Before applying the LRR technique, the explanatory variables were centered and scaled by using a unit length scaling method. The correlation matrix between the explanatory variables is reported in Table 4.5. Noticeably, SMEAR and INFIL are highly correlated, while CELL and INFIL are moderately correlated, which implies multicollinearity.

Table 4.5 The Correlation Matrix of the Explanatory Variables in the Lee Cancer Remission Dataset ($n=27$).

	Correlation Matrix of the Explanatory Variables				
	CELL	SMEAR	INFIL	LI	TEMP
CELL	1.0000	0.2918	0.6071	0.1902	0.1082
SMEAR		1.0000	0.9297	0.3175	-0.1125
INFIL			1.0000	0.3211	-0.0445
LI				1.0000	-0.0548
TEMP					1.0000

The model corresponding to these standardized variables is
$\log i t\left(\hat{\pi}\left(\mathbf{x}_{i}\right)\right)=\hat{\beta}_{0}+\hat{\beta}_{1} C E L L_{i}+\hat{\beta}_{2} \operatorname{SMEAR}_{i}+\hat{\beta}_{3}$ INFIL $_{i}+\hat{\beta}_{4} L I_{i}+\hat{\beta}_{5} T E M P_{i}, \quad i=1,2, \ldots, n$.

Estimates of the standardized regression coefficients and standard error (in parentheses), ridge parameter, MSE, relative error (RE), and deviance (DEV) by the ML and LRR estimators are reported in Table 4.5, in which CELL, SMEAR, and INFIL are obviously highly correlated. The standard errors are based, in part, on the correlation between the variables in the model, and it is evident that those of the estimated regression coefficients of CELL, SMEAR, and INFIL (corresponding to $\hat{\beta}_{1}, \hat{\beta}_{2}$, and $\hat{\beta}_{3}$, respectively) were explicitly inflated by the ML estimator for Model (4.8) due to the multicollinearity problem. Next, the standardized regression coefficients in Table 4.6 were converted back into the original units of data, as reported in Table 4.7.

Table 4.6 Estimates of Standardized Regression Coefficients (Standard Error), Ridge Parameter (k), MSE, RE and DEV by the ML and LRR estimators.

Variable	Method							
	ML	$k_{\text {opt }}$	$k_{H K}$	$k_{H K B}$	$k_{S R W 1}$	$k_{S R W 2}$	$k_{G M}$	$k_{W A}$
Constant	-2.3111	-1.7855	-2.0011	-1.7972	-1.7882	-1.5098	-1.0071	-1.2802
	(1.8001)	(1.0565)	(1.2319)	(1.0621)	(1.0578)	(0.9312)	(0.7163)	(0.8279)
CELL	23.0121	8.5009	13.7348	8.7021	8.5463	5.8148	2.8942	4.3921
	(44.975)	(7.7147)	(19.6764)	(8.0339)	(7.7849)	(5.2077)	(3.2967)	(4.3109)
SMEAR	20.0497	0.7390	7.4003	0.9551	0.7871	-0.7988	-0.4977	-0.7402
	(61.3591)	(7.2466)	(25.854)	(7.8438)	(7.3793)	(2.8289)	(2.0315)	(2.3497)
INFIL	-22.3814	0.1783	-7.5863	-0.0712	0.1229	1.8532	1.2099	1.6580
	(71.7846)	(8.3556)	(30.2193)	(9.0643)	(8.5133)	(2.9498)	(1.876)	(2.2955)
LI	9.5107	8.8752	9.2313	8.9057	8.8824	7.8773	5.6784	6.9103
	(4.536)	(4.264)	(4.3991)	(4.277)	(4.2671)	(3.811)	(2.8411)	(3.3765)
TEMP	-6.5271	-6.0361	-6.3496	-6.0663	-6.0433	-5.0097	-2.8163	-4.0230
	(4.9092)	(4.7173)	(4.8512)	(4.7318)	(4.7208)	(4.199)	(3.0594)	(3.6936)
k	0	0.00074	0.00013	0.00067	0.00072	0.00382	0.01682	0.00814
MSE	$10,988.64$	$1,316.74$	$2,478.38$	$1,318.01$	$1,316.80$	$1,400.18$	$1,450.10$	$1,426.02$
RE		834.53	443.38	833.73	834.50	784.80	757.78	770.58
DEV	21.7550	21.8746	21.8002	21.8702	21.8736	22.0482	23.2243	22.3968

In the experiment, the value of the ridge parameter was in the range $0.0001<k<0.017$. The ridge method was effective in significantly reducing the MSE of the ML estimator, and the size of the regression coefficients shrank depending on the value of k. The estimated regression coefficients due to the LRR methods were smaller than those of the ML estimator, especially those of the explanatory variables with multicollinearity (i.e. CELL, SMEAR and INFIL corresponding to $\hat{\beta}_{L R R, 1}$, $\hat{\beta}_{L R R, 2}$ and $\hat{\beta}_{L R R, 3}$ respectively), and the regression coefficient sign of INFIL differed from the ML estimator. The proposed estimator, $k_{\text {opt }}$, produced the lowest MSE. Interestingly, $k_{\text {opt }}$ and $k_{S R W 1}$ realized quite similar MSE and k values. The deviances of the methods were not very different.

Marx and Smith (1990) recommended a formula to convert the standardized regression coefficients to the original unit (uncentered and unscaled regression coefficients):

$$
\begin{equation*}
b_{j}=q_{j}^{-1} \hat{\beta}_{L R R, j}, \quad j=1,2, \ldots, p \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{0}=\hat{\beta}_{L R R, 0}-\sum_{j} q_{j}^{-1} \bar{x}_{j} \hat{\beta}_{L R R, j}, \quad j=1,2, \ldots, p, \tag{4.10}
\end{equation*}
$$

where $q_{j}=\sqrt{\sum_{i}\left(x_{i j}-\bar{x}_{j}\right)^{2}}$.
The standard errors associated with the uncentered and unscaled LRR estimators are defined as

$$
\begin{equation*}
S E\left(b_{j}\right)=q_{j}^{-1} S E\left(\hat{\beta}_{L R R, j}\right), \quad j=1,2, \ldots, p, \tag{4.11}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{SE}\left(b_{0}\right)= & \left\{\operatorname{Var}\left(\hat{\beta}_{L R R, 0}\right)+\sum_{j=1}^{p}\left(q_{j}^{-1} \bar{x}_{j}\right)^{2} \operatorname{Var}\left(\hat{\beta}_{L R R, j}\right)\right. \\
& +2 \sum_{i<j} \sum_{j \neq 0} q_{i}^{-1} q_{j}^{-1} \bar{x}_{i} \bar{x}_{j} \operatorname{Cov}\left(\hat{\beta}_{L R R, i}, \hat{\beta}_{L R R, j}\right) \\
& \left.-2 \sum_{j=1}^{p} q_{j}^{-1} \bar{x}_{j} \operatorname{Cov}\left(\hat{\beta}_{L R R, 0}, \hat{\beta}_{L R R, j}\right)\right\}^{1 / 2} . \tag{4.12}
\end{align*}
$$

The estimates of regression coefficients and standard error with the ML and LRR estimators are summarized in Table 4.7.

The estimates of standardized and unstandardized regression coefficients of each method in Table 4.6 and Table 4.7 are the same except for the constant term. When comparing the estimates of regression coefficients with the ML and LRR estimators in Table 4.7, it was found that b_{3} with $k_{H K}$ and $k_{H K B}$ was similar to ML but the original negative estimate changed positive with $k_{\text {opt }}$ and $k_{S R W 1}$. Similarly, the original positive estimate of b_{2} changed to negative with $k_{S R W 2}, k_{G M}$, and $k_{W A}$. Therefore, in practice, the appropriate methods are $k_{\text {opt }}$ and $k_{S R W 1}$, which also provided values of k
and MSE that were identical. In addition, when comparing the prediction percentage with both methods, the results were the same.

Table 4.7 Estimates of Regression Coefficients (Standard Error) by ML and LRR Estimators.

Variable	Method							
	ML	$k_{\text {opt }}$	$k_{H K}$	$k_{H K B}$	$k_{S R W 1}$	$k_{S R W 2}$	$k_{G M}$	$k_{W A}$
Constant	57.1285	65.5110	64.2034	65.6879	65.5553	55.2955	30.6967	44.3251
	(69.9768)	(57.7647)	(61.0266)	(57.9488)	(57.8079)	(51.9808)	(39.1675)	(46.3809)
CELL	24.1799	8.9323	14.4318	9.1437	8.9800	6.1099	3.0411	4.6149
	(47.2573)	(8.1062)	(20.6749)	(8.4415)	(8.18)	(5.472)	(3.4639)	(4.5297)
SMEAR	18.3697	0.6771	6.7802	0.8751	0.7211	-0.7319	-0.4560	-0.6782
	(56.2177)	(6.6394)	(23.6877)	(7.1865)	(6.761)	(2.5919)	(1.8612)	(2.1528)
INFIL	-18.4763	0.1472	-6.2627	-0.0588	0.1014	1.5298	0.9988	1.3687
	(59.2597)	(6.8977)	(24.9467)	(7.4828)	(7.0279)	(2.4352)	(1.5486)	(1.895)
LI	3.9872	3.7208	3.8701	3.7336	3.7238	3.3024	2.3806	2.8970
	(1.9017)	(1.7876)	(1.8442)	(1.7931)	(1.7889)	(1.5977)	(1.1911)	(1.4156)
TEMP	-86.1371	-79.6578	-83.7940	-80.0551	-79.7520	-66.1124	-37.1658	-53.0908
	(64.7854)	(62.2538)	(64.0202)	(62.4449)	(62.2993)	(55.4136)	(40.3742)	(48.7443)

As illustrated clearly in the real-life example, the LRR approach is a good alternative to the ML estimator when faced with the multicollinearity problem. Choosing an appropriate LRR estimator depends on the purpose of the user and the processing capabilities of the computer used. The optimal LRR method proposed in this study searches for an efficient LRR parameter whereas the others use methods to estimate the unknown LRR parameter for the dataset.

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

This dissertation presents a solution to solve the problem of determining the optimal ridge parameter in logistic regression by using one of the efficient searches for finding the optimal of a non-linear performance measure. A theorem on the upperbound of the ridge parameter based on the eigenvalues of the explanatory variables is developed to facilitate the numerical search. The following are the conclusions of the study in section 5.1 and recommendations for future work in section 5.2.

5.1 Conclusions

This dissertation demonstrates that it is quite convenient to compute the optimal ridge parameter, instead of the conventional approximations of ridge parameter, due to the ubiquity of powerful computing capability. A theorem on the upper-bound of the optimal ridge parameter estimator, $k_{\text {opt }}$, is developed by following the eigen approach such that $k_{\text {opt }}$ which minimizes the MSE of the estimates of the coefficients in the LRR model can be searched effectively in a specified small interval as shown in Table 4.3 and 4.4. A simulation is used to evaluate the relative efficiencies of the proposed $k_{\text {opt }}$ and other six well-known ridge parameter estimators, $k_{H K}, k_{H K B}, k_{S W 1}, k_{S W 2}, k_{G M}$ and $k_{W A}$ with respect to the ML estimator. The simulation results show that the relative efficiency of the proposed $k_{\text {opt }}$ is highest among the compared well-known estimators $k_{H K B}$ and $k_{S R W 1}$ are good alternatives as shown in Table 4.1 and 4.2. Also, the simulation result suggests that the ridge parameter in some cases may be greater than unity. Additionally, using a real-life data set of small size, comparisons with the same
six estimators show that the relative efficiency of the estimator with the optimal ridge parameter is also better than or equal to others.

5.2 Recommendations for Future Work

The effectiveness of direct search could be improved further by decreasing the upper-bound $k_{u b}$ with a better approximation than the first order approximation as in the proof of theorem. Other better direct search than the iterative Nelder-Mead Algorithm should be investigated. Furthermore, the concept of direct search should be extended to solve the ill-conditioned information matrix in other statistical estimation.

BIBLIOGRAPHY

Akay, K. U. 2014. A Graphical Evaluation of Logistic Ridge Estimator in Mixture Experiments. Journal of Applied Statistics. 41 (6): 1217 - 1232.

Al Turk, L. I. and Alsomahi, A. A. 2014. On Enhancing the Dorugade and Kashid's Ridge Parameter in Ridge Regression. Applied Mathematical Sciences. 8 (152): $7553-7565$.

Alkhamisi, M., Khalaf, G. and Shukur, G. 2006. Some Modifications for Choosing Ridge Parameters. Communications in Statistics - Theory and Methods. 35 (11): 2005-2020.
Allison, P. D. 2000. Logistic Regression Using SAS: Theory and Application. Cary, NC: SAS Institute.

Antoniadis, A. and Fan, J. 2001. Regularization of Wavelets Approximations. Journal of the American Statistical Association. 96 (455): 939 - 967.

Asar, Y. 2017. Some New Methods to Solve Multicollinearity in Logistic Regression. Communications in Statistics - Simulation and Computation. 46 (4): 2576-2586.

Asar, Y.; Arashi, M. and Wu, J. 2017. Restricted Ridge Estimator in the Logistic Regression Model. Communications in Statistics - Simulation and Computation. 46 (8): $1-7$.

Baeyens, E.; Herreros, A. and Perán, J. R. 2016. A Direct Search Algorithm for Global Optimization. Algorithms. 9 (2): 40.

Conniffe, D. and Stone, J. 1973. A Critical View of Ridge Regression. Journal of the Royal Statistical Society Series D (The Statistician). 22 (3): 181-187.

Cox, D. R. and Hinkley, D. V. 1974. Theoretical Statistics. London: Chapman and Hall.

Crotty, M. and Barker, C. 2014. Penalizing Your Models: An Overview of the Generalized Regression Platform. Cary, NC: SAS Institute.

De Grange, L.; Fariña, P. and De Dios Ortúzar, J. 2015. Dealing with Collinearity in Travel Time Valuation. Transportmetrica A: Transport Science. 11 (4): 317 - 332.

Dorugade, A. V. 2014. New Ridge Parameters for Ridge Regression. Journal of the Association of Arab Universities for Basic and Applied Sciences. 15: 94-99.

Duffy, D. E. and Santner, T. J. 1989. On the Small Sample Properties of NormRestricted ML Estimators for Logistic Regression Models. Communications in Statistics - Theory and Methods. 18 (3): 959-980.

Gujarati, D. N. and Porter, D. C. 2010. Essentials of Econometrics. $4^{\text {th }}$ ed. Singapore: The McGraw - Hill.

Hastings, R. P. 1986. SUGI Supplemental Library User's Guide. Cary, NC: SAS Institute.

Hoerl, A. E. and Kennard, R. W. 1970A. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics. 12 (1): 69-82.

Hoerl, A. E. and Kennard, R. W. 1970B. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics. 12 (1): 55-67.

Hoerl, A. E.; Kannard, R. W. and Baldwin, K. F. 1975. Ridge Regression: Some Simulations. Communications in Statistics - Theory and Methods. 4 (2): $105-123$.

Hosmer, D. and Lemeshow, S. 1989. Applied Logistic Regression. New York: John Wiley \& Sons.

Hosmer, D. W. and Lemeshow, S. 2000. Applied Logistic Regression. $2^{\text {nd }}$ ed. New York: John Wiley \& Sons.
Hosmer, D. W.; Taber, S. and Lemeshow, S. 1991. The Importance of Assessing the Fit of Logistic Regression Models: A Case Study. American Journal of Public Health. 81 (12): 1630 - 1635.

Hotelling, H. and Pabst, M. R. 1936. Rank Correlation and Tests of Significance Involving No Assumptions of Normality. Annals of Mathematical Statistics. 7: 29-43.

Jirawan Jitthavech. 2015. Regression Analysis. Bangkok: WVO Office of Printing Mill. [In Thai]

Khalaf, G. and Shukur, G. 2005. Choosing Ridge Parameter for Regression Problems. Communications in Statistics - Theory and Methods. 34 (5): 1177 - 1182.

Kibria, B. G. 2003. Performance of Some New Ridge Regression Estimators. Communications in Statistics - Simulation and Computation. 32 (2): 419-435.

Kibria, B. M. G.; Månsson, K. and Shukur, G. 2012. Performance of Some Logistic Ridge Regression Estimators. Computational Economics. 40 (4): 401-414.

Le Cessie, S. and Van Houwelingen, J. C. 1992. Ridge Estimators in Logistic Regression. Applied statistics. 41 (1): 191-201.

Lee, A. H. and Silvapulle, M. J. 1988. Ridge Estimation in Logistic Regression. Communications in Statistics - Simulation and Computation. 17 (4): 1231-1257.

Lee, E. T. 1974. A Computer Program for Linear Logistic Regression Analysis. Computer Programs in Biomedicine. 4 (2): 80 - 92.

Makalic, E. and Schmidt, D. F. 2011. Review of Modern Logistic Regression Methods with Application to Small and Medium Sample Size Problems. In AI 2010: Advances in Artificial Intelligence. Li J., ed. Berlin: Springer. Pp. 213-222.

Mansson, K. and Shukur, G. 2011. On Ridge Parameters in Logistic Regression. Communications in Statistics - Theory and Methods. 40 (18): 3366-3381.

Marx, B. D. 1988. Ill-Conditioned Information Matrices and Generalized Linear Model: An Asymptotically Biased Estimation Approach. Doctoral dissertation, Virginia Polytechnic Institute and State University, USA.

Marx, B. D. and Smith, E. P. 1990. Weighted Multicollinearity in Logistic Regression: Diagnostics and Biased Estimation Techniques with an Example from Lake Acidification. Canadian Journal of Fisheries and Aquatic Sciences. 47 (6): 1128-1135.

Meier, L.; Van De Geer, S. and Bühlmann, P. 2008. The Group Lasso for Logistic Regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 70 (1): 53-71.

Midi, H.; Sarkar, S. K. and Rana, S. 2010. Collinearity Diagnostics of Binary Logistic Regression Model. Journal of Interdisciplinary Mathematics. 13 (3): 253 - 267.

Muniz, G. and Kibria, B. G. 2009. On Some Ridge Regression Estimators: An Empirical Comparison. Communications in Statistics - Simulation and Computation. 38 (3): 621-630.

Muniz, G. B. M.; Kibria, G.; Mansson, K. and Shukur, G. 2012. On Developing Ridge Regression Parameters: A Graphical Investigation. Statistics and Operations Research Transactions. 36 (2): 115-138.

Nelder, J. A. and Mead, R. 1965. A Simplex Method for Function Minimization. The Computer Journal. 7: 308-313.

Okeh, U. M. and Oyeka, I. C. A. 2013. Estimating the Fisher's Scoring Matrix Formula from Logistic Model. American Journal of Theoretical and Applied Statistics. 2 (6): 221 - 227.

Özkale, M. R. 2016. Iterative Algorithms of Biased Estimation Methods in Binary Logistic Regression. Statistical Papers. 57 (4): 991 - 1016.

Özkale, M. R. and Arıcan, E. 2016. A New Biased Estimator in Logistic Regression Model. Statistics. 50 (2): 233 - 253.

Özkale, M. R.; Lemeshow, S. and Sturdivant, R. 2017. Logistic Regression Diagnostics in Ridge Regression. Computational Statistics. 1-31.

Rashid, M. 2008. Inference on Logistic Regression Model. Doctoral dissertation, Bowling Green State University, USA.

Rashid, M. and Shifa, N. 2009. Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach. Journal of Statistics. 16 (1): 1-11.

Ryan, T. P. 1997. Modern Regression Methods. New York: John Wiley \& Sons.
Schaefer, R. L. 1979. Multicollinearity and Logistic Regression. Doctoral dissertation, the University of Michigan, USA.

Schaefer, R. L. 1986. Alternative Estimators in Logistic Regression When the Data are Collinear. Journal of Statistical Computation and Simulation. 25 (1-2): $75-91$.

Schaefer, R. L.; Roi, L. D. and Wolfe, R. A. 1984. A Ridge Logistic Estimator. Communications in Statistics - Theory and Methods. 13 (1): 99-113.

Tibshirani, R. 1996. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological). 58 (1): 267-288.

Vágó, E. and Kemény, S. 2006. Logistic Ridge Regression for Clinical Data Analysis (A Case Study). Applied Ecology and Environmental Research. 4 (2): 171 - 179.

Wu, J., and Asar, Y. 2016. On Almost Unbiased Ridge Logistic Estimator for the Logistic Regression Model. Hacettepe Journal of Mathematics and Statistics. 45 (3): 989 - 998.

APPENDICES

Appendix A

The Results of the Simulation Study

The results of the simulation study are presented in two parts. First, in case of three explanatory variables, the ridge parameter k and the estimators at each correlation level are reported in Appendix A.1. The median of ridge parameter k, the estimated standardized regression coefficients, the squared bias, variance, MSE, and deviance of the estimated coefficients are reported in Tables A.1.1 to Tables A.1.12. Second, in case of five explanatory variables, the ridge parameter k and the estimators at each correlation level are presented in Appendix A.2. The medians of the ridge parameter k, the estimated standard regression coefficients, the absolute bias, MSE, RE and deviance of the estimators are summarized in Tables A.2.1 - A.2.12.

A. 1 The Results of the Simulation Study in case of Three Explanatory Variables

The effect of varying the correlation level and sample size on the performance of the ML and LRR estimators are presented.

Table A.1.1 The Results of the ML and LRR Estimator Performances for $\rho=0.90$ and $n=100$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2919 | 0.0000 | 0.0440 | |
| | w_{1} | 2.9193 | 0.0000 | 23.6342 | |
| | w_{2} | 0.7548 | 0.0000 | 23.5304 | |
| | w_{3} | -1.8411 | 0.0000 | 4.5733 | |
| | DEV $=129.8437$ | Total | 0.0000 | 51.7819 | 100.00 |
| KOPT | constant | 0.2838 | 0.0082 | 0.0436 | |
| $k=0.0474$ | w_{1} | 2.2681 | 1.9455 | 9.9337 | |
| | w_{2} | 0.8174 | 1.8468 | 9.6290 | |
| | w_{3} | -1.4494 | 0.5226 | 3.3266 | |
| | DEV $=130.2447$ | Total | 4.3231 | 22.9328 | 225.80 |
| HK | constant | 0.2887 | 0.0032 | 0.0439 | |
| $k=0.0150$ | w_{1} | 2.6274 | 1.1348 | 11.7771 | |
| | w_{2} | 0.8470 | 1.1040 | 11.6535 | |
| | w_{3} | -1.6941 | 0.2068 | 3.8571 | |
| | DEV $=129.9360$ | Total | 2.4489 | 27.3315 | 189.46 |
| HKB | constant | 0.2850 | 0.0070 | 0.0438 | |
| $k=0.0405$ | w_{1} | 2.2894 | 2.0525 | 10.2913 | |
| | w_{2} | 0.9458 | 1.9803 | 10.0413 | |
| | w_{3} | -1.5296 | 0.4265 | 3.3464 | |
| | DEV=130.1691 | Total | 4.4662 | 23.7227 | 218.28 |
| SRW1 | constant | 0.2858 | 0.0063 | 0.0438 | |
| $k=0.0358$ | w_{1} | 2.3793 | 1.8077 | 10.0728 | |
| | w_{2} | 0.8912 | 1.7424 | 9.8589 | |
| | w_{3} | -1.5494 | 0.3949 | 3.4522 | |
| | DEV=130.1047 | Total | 3.9512 | 23.4275 | 221.03 |
| SRW2 | constant | 0.2799 | 0.0123 | 0.0435 | |
| $k=0.0943$ | w_{1} | 1.8881 | 2.8660 | 12.7305 | |
| | w_{2} | 0.9667 | 2.7290 | 12.1257 | |
| | w_{3} | -1.2790 | 0.7389 | 3.0388 | |
| | $\mathrm{DEV}=130.6210$ | Total | 6.3462 | 27.9386 | 185.34 |
| GM | constant | 0.2726 | 0.0197 | 0.0430 | |
| $k=0.2329$ | w_{1} | 1.2275 | 3.8805 | 22.9882 | |
| | w_{2} | 0.9441 | 3.6589 | 21.1044 | |
| | w_{3} | -0.8625 | 1.2219 | 3.4236 | |
| | DEV=131.8539 | Total | 8.7811 | 47.5592 | 108.88 |
| WA | constant | 0.2709 | 0.0214 | 0.0431 | |
| $k=0.2449$ | w_{1} | 1.3047 | 3.7233 | 19.6195 | |
| | w_{2} | 0.8647 | 3.4908 | 18.0261 | |
| | w_{3} | -0.8762 | 1.2267 | 3.4210 | |
| | DEV $=131.6744$ | Total | 8.4622 | 41.1096 | 125.96 |

Note: $k_{u b}=6.5188$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.1.2 The Results of the ML and LRR Estimator Performances for $\rho=0.90$ and $n=200$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2832 | 0.0000 | 0.0211 | |
| | w_{1} | 2.4273 | 0.0000 | 22.3219 | |
| | w_{2} | 0.7909 | 0.0000 | 22.2898 | |
| | w_{3} | -1.4765 | 0.0000 | 4.2925 | |
| | DEV $=267.3959$ | Total | 0.0000 | 48.9253 | 100.00 |
| KOPT | constant | 0.2788 | 0.0044 | 0.0209 | |
| $k=0.0684$ | w_{1} | 1.8019 | 1.7928 | 8.2990 | |
| | w_{2} | 0.8494 | 1.7578 | 8.1161 | |
| | w_{3} | -1.1340 | 0.5005 | 2.8914 | |
| | DEV=267.8046 | Total | 4.0555 | 19.3273 | 253.14 |
| HK | constant | 0.2816 | 0.0016 | 0.0210 | |
| $k=0.0196$ | w_{1} | 2.1311 | 1.1081 | 9.8597 | |
| | w_{2} | 0.8898 | 1.0879 | 9.7911 | |
| | w_{3} | -1.3407 | 0.2058 | 3.4615 | |
| | $\mathrm{DEV}=267.4962$ | Total | 2.4035 | 23.1334 | 211.49 |
| HKB | constant | 0.2797 | 0.0036 | 0.0210 | |
| $k=0.0561$ | w_{1} | 1.8326 | 1.9255 | 8.6796 | |
| | w_{2} | 0.9535 | 1.8885 | 8.4774 | |
| | w_{3} | -1.1926 | 0.4191 | 2.9189 | |
| | DEV $=267.7363$ | Total | 4.2366 | 20.0969 | 243.45 |
| SRW1 | constant | 0.2802 | 0.0030 | 0.0210 | |
| $k=0.0438$ | w_{1} | 1.9092 | 1.6614 | 8.4961 | |
| | w_{2} | 0.9347 | 1.6234 | 8.3179 | |
| | w_{3} | -1.2257 | 0.3678 | 3.0644 | |
| | DEV $=267.6492$ | Total | 3.6556 | 19.8993 | 245.86 |
| | constant | 0.2772 | 0.0061 | 0.0208 | |
| $k=0.1219$ | w_{1} | 1.5201 | 2.5649 | 10.5613 | |
| | w_{2} | 0.9434 | 2.4838 | 10.0160 | |
| | w_{3} | -0.9977 | 0.6839 | 2.6291 | |
| | DEV=268.1331 | Total | 5.7386 | 23.2273 | 210.64 |
| GM | constant | 0.2727 | 0.0106 | 0.0207 | |
| $k=0.2868$ | w_{1} | 1.0852 | 3.4027 | 17.8811 | |
| | w_{2} | 0.8525 | 3.2014 | 16.0686 | |
| | w_{3} | -0.7047 | 1.0706 | 2.8194 | |
| | DEV=269.1092 | Total | 7.6853 | 36.7899 | 132.99 |
| WA | constant | 0.2722 | 0.0111 | 0.0207 | |
| $k=0.3189$ | w_{1} | 1.0629 | 3.2884 | 15.8358 | |
| | w_{2} | 0.7908 | 3.1083 | 14.3530 | |
| | w_{3} | -0.6696 | 1.1144 | 2.9354 | |
| | DEV=269.1005 | Total | 7.5222 | 33.1449 | 147.61 |

Note: $k_{u b}=8.4438$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.1.3 The Results of the ML and LRR Estimator Performances for $\rho=0.90$ and $n=500$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2350 | 0.0000 | 0.0082 | |
| | w_{1} | 2.1443 | 0.0000 | 21.6145 | |
| | w_{2} | 1.0165 | 0.0000 | 21.6150 | |
| | w_{3} | -1.6124 | 0.0000 | 4.1397 | |
| | DEV $=680.7005$ | Total | 0.0000 | 47.3775 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0570 \end{aligned}$ | constant | 0.2336 | 0.0014 | 0.0082 | |
| | w_{1} | 1.6513 | 1.7853 | 8.3273 | |
| | w_{2} | 0.9965 | 1.7581 | 8.2532 | |
| | w_{3} | -1.2469 | 0.4727 | 2.8805 | |
| | DEV=681.1003 | Total | 4.0175 | 19.4693 | 243.34 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0195 \end{aligned}$ | constant | 0.2345 | 0.0006 | 0.0082 | |
| | w_{1} | 1.9020 | 1.1452 | 9.6941 | |
| | w_{2} | 1.0786 | 1.1368 | 9.6763 | |
| | w_{3} | -1.4648 | 0.1958 | 3.3770 | |
| | $\mathrm{DEV}=680.8064$ | Total | 2.4783 | 22.7557 | 208.20 |
| $\begin{aligned} & \mathrm{HKB} \\ & k=0.0542 \end{aligned}$ | constant | 0.2338 | 0.0012 | 0.0082 | |
| | w_{1} | 1.6411 | 2.0081 | 8.7982 | |
| | w_{2} | 1.1121 | 1.9832 | 8.7062 | |
| | w_{3} | -1.3032 | 0.4078 | 2.8370 | |
| | $\mathrm{DEV}=681.0678$ | Total | 4.4002 | 20.3495 | 232.80 |
| SRW1$k=0.0409$ | constant | 0.2340 | 0.0010 | 0.0082 | |
| | w_{1} | 1.7605 | 1.6525 | 8.5112 | |
| | w_{2} | 1.0743 | 1.6372 | 8.4712 | |
| | w_{3} | -1.3556 | 0.3350 | 3.0372 | |
| | DEV $=680.9469$ | Total | 3.6257 | 20.0279 | 236.56 |
| SRW2$k=0.1063$ | constant | 0.2330 | 0.0020 | 0.0082 | |
| | w_{1} | 1.4218 | 2.5878 | 10.5677 | |
| | w_{2} | 1.0526 | 2.5469 | 10.3879 | |
| | w_{3} | -1.1169 | 0.6421 | 2.5741 | |
| | DEV=681.4344 | Total | 5.7787 | 23.5379 | 201.28 |
| $\begin{aligned} & \text { GM } \\ & k=0.3165 \end{aligned}$ | constant | 0.2313 | 0.0037 | 0.0081 | |
| | w_{1} | 0.9995 | 3.4539 | 17.9786 | |
| | w_{2} | 0.9068 | 3.3738 | 17.3252 | |
| | w_{3} | -0.7904 | 1.0600 | 2.5738 | |
| | DEV $=682.4427$ | Total | 7.8913 | 37.8858 | 125.05 |
| $\begin{aligned} & \text { WA } \\ & k=0.2781 \end{aligned}$ | constant | 0.2314 | 0.0036 | 0.0081 | |
| | w_{1} | 1.0267 | 3.3026 | 15.5631 | |
| | w_{2} | 0.8516 | 3.2288 | 15.1251 | |
| | w_{3} | -0.7615 | 1.0733 | 2.8215 | |
| | $\mathrm{DEV}=682.3935$ | Total | 7.6083 | 33.5178 | 141.35 |

Note: $k_{u b}=11.6883$; results of ridge parameter reported as medians; a ${ }^{\text {a }}$ stimated standardized regression coefficients

Table A.1.4 The Results of the ML and LRR Estimator Performances for $\rho=0.90$ and $n=1000$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2715 | 0.0000 | 0.0041 | |
| | w_{1} | 2.0590 | 0.0000 | 21.4991 | |
| | w_{2} | 0.9502 | 0.0000 | 21.4967 | |
| | w_{3} | -1.5177 | 0.0000 | 4.1199 | |
| | $\mathrm{DEV}=1362.7780$ | Total | 0.0000 | 47.1198 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0618 \end{aligned}$ | constant | 0.2707 | 0.0008 | 0.0041 | |
| | w_{1} | 1.6413 | 1.7386 | 8.1334 | |
| | w_{2} | 0.8536 | 1.7220 | 8.1226 | |
| | w_{3} | -1.1680 | 0.4899 | 2.8738 | |
| | DEV=1363.1779 | Total | 3.9514 | 19.1338 | 246.26 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0200 \end{aligned}$ | constant | 0.2712 | 0.0003 | 0.0041 | |
| | w_{1} | 1.8672 | 1.1187 | 9.4706 | |
| | w_{2} | 0.9483 | 1.1084 | 9.4677 | |
| | w_{3} | -1.3746 | 0.2102 | 3.3295 | |
| | DEV=1362.8857 | Total | 2.4376 | 22.2719 | 211.57 |
| $\begin{aligned} & \text { HKB } \\ & k=0.0554 \end{aligned}$ | constant | 0.2708 | 0.0007 | 0.0041 | |
| | w_{1} | 1.6369 | 1.9839 | 8.6315 | |
| | w_{2} | 0.9539 | 1.9613 | 8.5877 | |
| | w_{3} | -1.2170 | 0.4245 | 2.8135 | |
| | DEV=1363.1543 | Total | 4.3704 | 20.0369 | 235.17 |
| SRW1$k=0.0408$ | constant | 0.2710 | 0.0006 | 0.0041 | |
| | w_{1} | 1.7286 | 1.6178 | 8.3315 | |
| | w_{2} | 0.9391 | 1.6034 | 8.3161 | |
| | w_{3} | -1.2690 | 0.3554 | 3.0029 | |
| | DEV=1363.0308 | Total | 3.5771 | 19.6545 | 239.74 |
| SRW2$k=0.1117$ | constant | 0.2704 | 0.0011 | 0.0041 | |
| | w_{1} | 1.4114 | 2.5484 | 10.4009 | |
| | w_{2} | 0.9124 | 2.5195 | 10.2873 | |
| | w_{3} | -1.0402 | 0.6594 | 2.5853 | |
| | DEV=1363.5214 | Total | 5.7284 | 23.2774 | 202.43 |
| $\begin{aligned} & \text { GM } \\ & k=0.3136 \end{aligned}$ | constant | 0.2694 | 0.0021 | 0.0041 | |
| | w_{1} | 0.9836 | 3.3814 | 17.6298 | |
| | w_{2} | 0.8510 | 3.3224 | 17.0132 | |
| | w_{3} | -0.7653 | 1.0371 | 2.5518 | |
| | DEV=1364.4292 | Total | 7.7430 | 37.1990 | 126.67 |
| $\begin{aligned} & \text { WA } \\ & k=0.3125 \end{aligned}$ | constant | 0.2694 | 0.0021 | 0.0041 | |
| | w_{1} | 1.0035 | 3.2318 | 15.2991 | |
| | w_{2} | 0.7641 | 3.2041 | 14.9278 | |
| | w_{3} | -0.7096 | 1.0826 | 2.8728 | |
| | DEV $=1364.4444$ | Total | 7.5206 | 33.1038 | 142.34 |

Note: $k_{u b}=11.6507$; results of ridge parameter reported as medians; a ${ }^{\text {a }}$ stimated standardized regression coefficients

Table A.1.5 The Results of the ML and LRR Estimator Performances for $\rho=0.95$ and $n=100$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2992 | 0.0000 | 0.0439 | |
| | w_{1} | 2.3046 | 0.0000 | 45.7270 | |
| | w_{2} | 1.2920 | 0.0000 | 45.7353 | |
| | w3 | -1.9021 | 0.0000 | 4.5569 | |
| | DEV=130.0871 | Total | 0.0000 | 96.0632 | 100.00 |
| KOPT | constant | 0.2921 | 0.0073 | 0.0435 | |
| $k=0.0240$ | w_{1} | 1.8282 | 2.6069 | 17.3223 | |
| | w_{2} | 1.2980 | 2.5942 | 17.2437 | |
| | w_{3} | -1.5690 | 0.4083 | 3.4933 | |
| | DEV $=130.4239$ | Total | 5.6168 | 38.1027 | 252.12 |
| HK | constant | 0.2964 | 0.0029 | 0.0438 | |
| $k=0.0096$ | w_{1} | 2.0721 | 1.6429 | 20.1705 | |
| | w_{2} | 1.3682 | 1.6406 | 20.1523 | |
| | w_{3} | -1.7717 | 0.1637 | 3.9763 | |
| | DEV=130.1756 | Total | 3.4500 | 44.3430 | 216.64 |
| HKB | constant | 0.2930 | 0.0064 | 0.0437 | |
| $k=0.0290$ | w_{1} | 1.8385 | 2.9378 | 18.0282 | |
| | w_{2} | 1.3984 | 2.9256 | 17.9183 | |
| | w_{3} | -1.6168 | 0.3528 | 3.5057 | |
| | DEV=130.3993 | Total | 6.2227 | 39.4957 | 243.22 |
| SRW1 | constant | 0.2938 | 0.0055 | 0.0437 | |
| $k=0.0217$ | w_{1} | 1.9097 | 2.5199 | 17.4384 | |
| | w_{2} | 1.3689 | 2.5163 | 17.3843 | |
| | w_{3} | -1.6466 | 0.3144 | 3.6300 | |
| | $\mathrm{DEV}=130.3218$ | Total | 5.3562 | 38.4963 | 249.54 |
| | constant | 0.2884 | 0.0110 | 0.0435 | |
| $k=0.0678$ | w_{1} | 1.5918 | 3.9123 | 22.8760 | |
| | w_{2} | 1.3260 | 3.8828 | 22.6310 | |
| | w_{3} | -1.3906 | 0.6187 | 3.1771 | |
| | DEV $=130.7836$ | Total | 8.4248 | 48.7275 | 197.14 |
| | | 0.2803 | 0.0194 | 0.0428 | |
| $k=0.1971$ | w_{1} | 1.1372 | 5.1654 | 39.8641 | |
| | w_{2} | 1.0648 | 5.0817 | 39.4491 | |
| | w_{3} | -0.9360 | 1.1299 | 3.3354 | |
| | DEV $=131.9489$ | Total | 11.3965 | 82.6912 | 116.17 |
| WA | constant | 0.2808 | 0.0189 | 0.0431 | |
| $k=0.1640$ | w_{1} | 1.2333 | 4.8139 | 33.1328 | |
| | w_{2} | 1.1114 | 4.7519 | 32.5870 | |
| | w_{3} | -1.0281 | 1.0351 | 3.3479 | |
| | DEV $=131.6260$ | Total | 10.6198 | 69.1109 | 139.00 |

Note: $k_{u b}=6.6553$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.1.6 The Results of the ML and LRR Estimator Performances for $\rho=0.95$ and $n=200$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2915 | 0.0000 | 0.0211 | |
| | w_{1} | 2.2700 | 0.0000 | 43.6179 | |
| | w_{2} | 1.1057 | 0.0000 | 43.6069 | |
| | w_{3} | -1.3964 | 0.0000 | 4.2942 | |
| | DEV=267.1187 | Total | 0.0000 | 91.5402 | 100.00 |
| KOPT | constant | 0.2879 | 0.0036 | 0.0210 | |
| $k=0.0254$ | w_{1} | 1.8163 | 2.4876 | 16.0464 | |
| | w_{2} | 1.1177 | 2.4845 | 16.0244 | |
| | w_{3} | -1.1336 | 0.3948 | 3.2010 | |
| | $\mathrm{DEV}=267.4550$ | Total | 5.3705 | 35.2927 | 259.37 |
| HK | constant | 0.2901 | 0.0014 | 0.0211 | |
| $k=0.0111$ | w_{1} | 2.0586 | 1.6407 | 18.2886 | |
| | w_{2} | 1.1653 | 1.6336 | 18.2643 | |
| | w_{3} | -1.2920 | 0.1662 | 3.6825 | |
| | $\mathrm{DEV}=267.2138$ | Total | 3.4419 | 40.2565 | 227.39 |
| HKB | constant | 0.2884 | 0.0031 | 0.0210 | |
| $k=0.0346$ | w_{1} | 1.7831 | 2.8961 | 16.8926 | |
| | w_{2} | 1.2566 | 2.8859 | 16.8336 | |
| | w_{3} | -1.1734 | 0.3400 | 3.2211 | |
| | DEV $=267.4468$ | Total | 6.1251 | 36.9683 | 247.62 |
| | constant | 0.2889 | 0.0026 | 0.0210 | |
| $k=0.0235$ | w_{1} | 1.8916 | 2.4199 | 16.1372 | |
| | w_{2} | 1.1879 | 2.4084 | 16.0977 | |
| | w_{3} | -1.2008 | 0.2989 | 3.3552 | |
| | $\mathrm{DEV}=267.3540$ | Total | 5.1297 | 35.6111 | 257.06 |
| | constant | 0.2863 | 0.0052 | 0.0210 | |
| $k=0.0744$ | w_{1} | 1.5398 | 3.7417 | 21.2421 | |
| | w_{2} | 1.2243 | 3.7277 | 21.0957 | |
| | w_{3} | -1.0144 | 0.5629 | 2.8960 | |
| | DEV $=267.7978$ | Total | 8.0376 | 45.2547 | 202.28 |
| GM | constant | 0.2820 | 0.0095 | 0.0208 | |
| $k=0.2331$ | w_{1} | 1.1655 | 4.9622 | 38.2977 | |
| | w_{2} | 1.0744 | 4.8936 | 37.3076 | |
| | w_{3} | -0.7368 | 0.9346 | 2.5295 | |
| | DEV $=268.6905$ | Total | 10.7999 | 78.1556 | 117.13 |
| WA | constant | 0.2824 | 0.0091 | 0.0209 | |
| $k=0.1794$ | w_{1} | 1.1943 | 4.6176 | 31.1223 | |
| | w_{2} | 1.0517 | 4.5824 | 30.6715 | |
| | w_{3} | -0.7473 | 0.9232 | 2.8851 | |
| | DEV $=268.5816$ | Total | 10.1324 | 64.6998 | 141.48 |

Note: $k_{u b}=8.3725$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.1.7 The Results of the ML and LRR Estimator Performances for $\rho=0.95$ and $n=500$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2329 | 0.0000 | 0.0082 | |
| | w_{1} | 2.0678 | 0.0000 | 42.1896 | |
| | w_{2} | 0.9015 | 0.0000 | 42.1846 | |
| | w_{3} | -1.4649 | 0.0000 | 4.1399 | |
| | DEV $=680.8537$ | Total | 0.0000 | 88.5223 | 100.00 |
| KOPT | constant | 0.2318 | 0.0012 | 0.0082 | |
| $k=0.0270$ | w_{1} | 1.7286 | 2.4820 | 15.7689 | |
| | w_{2} | 0.8737 | 2.4748 | 15.7370 | |
| | w_{3} | -1.2172 | 0.3718 | 3.1332 | |
| | DEV $=681.1758$ | Total | 5.3298 | 34.6472 | 255.50 |
| HK | constant | 0.2324 | 0.0005 | 0.0082 | |
| $k=0.0123$ | w_{1} | 1.9086 | 1.7021 | 17.5102 | |
| | w_{2} | 0.9225 | 1.6984 | 17.4903 | |
| | w_{3} | -1.3532 | 0.1671 | 3.5372 | |
| | DEV=680.9583 | Total | 3.5681 | 38.5459 | 229.65 |
| HKB | constant | 0.2319 | 0.0011 | 0.0082 | |
| $k=0.0365$ | w_{1} | 1.6958 | 2.9731 | 16.7647 | |
| | w_{2} | 0.9644 | 2.9659 | 16.7280 | |
| | w_{3} | -1.2291 | 0.3501 | 3.0879 | |
| | DEV=681.2088 | Total | 6.2902 | 36.5888 | 241.94 |
| SRW1 | constant | 0.2321 | 0.0008 | 0.0082 | |
| $k=0.0252$ | w_{1} | 1.7890 | 2.4091 | 15.8389 | |
| | w_{2} | 0.9325 | 2.4026 | 15.8058 | |
| | w_{3} | -1.2740 | 0.2854 | 3.2649 | |
| | $\mathrm{DEV}=681.0857$ | Total | 5.0979 | 34.9178 | 253.52 |
| | constant | 0.2312 | 0.0017 | 0.0082 | |
| $k=0.0727$ | w_{1} | 1.4910 | 3.7410 | 20.7899 | |
| | w_{2} | 0.9585 | 3.7293 | 20.7097 | |
| | w_{3} | -1.0893 | 0.5548 | 2.8289 | |
| | DEV $=681.5247$ | Total | 8.0269 | 44.3367 | 199.66 |
| | constant | 0.2295 | 0.0035 | 0.0081 | |
| $k=0.2819$ | w_{1} | 0.9980 | 5.0314 | 38.3214 | |
| | w_{2} | 0.9110 | 4.9991 | 37.7953 | |
| | w_{3} | -0.7434 | 1.0402 | 2.5887 | |
| | DEV $=682.5349$ | Total | 11.0742 | 78.7135 | 112.46 |
| WA | constant | 0.2299 | 0.0030 | 0.0082 | |
| $k=0.1814$ | w_{1} | 1.1311 | 4.6280 | 30.4658 | |
| | w_{2} | 0.8762 | 4.6014 | 30.2426 | |
| | w_{3} | -0.8234 | 0.9307 | 2.8653 | |
| | DEV $=682.2807$ | Total | 10.1631 | 63.5820 | 139.23 |

Note: $k_{u b}=11.7225$; results of ridge parameter reported as medians; a estimated standardized regression coefficients

Table A.1.8 The Results of the ML and LRR Estimator Performances for $\rho=0.95$ and $n=1000$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2721 | 0.0000 | 0.0041 | |
| | w_{1} | 1.9599 | 0.0000 | 42.0866 | |
| | w_{2} | 1.0420 | 0.0000 | 42.0860 | |
| | w_{3} | -1.3999 | 0.0000 | 4.1223 | |
| | DEV $=1362.3482$ | Total | 0.0000 | 88.2990 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0240 \end{aligned}$ | constant | 0.2714 | 0.0007 | 0.0041 | |
| | w_{1} | 1.5570 | 2.4818 | 15.9734 | |
| | w_{2} | 1.0828 | 2.4569 | 15.8706 | |
| | w_{3} | -1.1586 | 0.3445 | 3.1382 | |
| | DEV=1362.6743 | Total | 5.2838 | 34.9861 | 252.38 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0110 \end{aligned}$ | constant | 0.2718 | 0.0003 | 0.0041 | |
| | w_{1} | 1.7390 | 1.6819 | 17.8410 | |
| | w_{2} | 1.1326 | 1.6787 | 17.8176 | |
| | w_{3} | -1.2987 | 0.1463 | 3.5483 | |
| | $\mathrm{DEV}=1362.4494$ | Total | 3.5072 | 39.2110 | 225.19 |
| HKB$k=0.0326$ | constant | 0.2715 | 0.0006 | 0.0041 | |
| | w_{1} | 1.5413 | 2.9869 | 17.0178 | |
| | w_{2} | 1.1638 | 2.9692 | 16.9245 | |
| | w_{3} | -1.1838 | 0.3148 | 3.0937 | |
| | DEV=1362.6996 | Total | 6.2715 | 37.0402 | 238.39 |
| $\begin{aligned} & \text { SRW1 } \\ & k=0.0225 \end{aligned}$ | constant | 0.2716 | 0.0005 | 0.0041 | |
| | w_{1} | 1.6303 | 2.4010 | 16.0598 | |
| | w_{2} | 1.1363 | 2.3909 | 16.0111 | |
| | w_{3} | -1.2227 | 0.2529 | 3.2776 | |
| | $\mathrm{DEV}=1362.5748$ | Total | 5.0453 | 35.3527 | 249.77 |
| SRW2$k=0.0660$ | constant | 0.2711 | 0.0010 | 0.0041 | |
| | w_{1} | 1.3795 | 3.7648 | 21.0940 | |
| | w_{2} | 1.1165 | 3.7330 | 20.9254 | |
| | w_{3} | -1.0491 | 0.5087 | 2.8226 | |
| | DEV $=1363.0144$ | Total | 8.0075 | 44.8461 | 196.89 |
| $\begin{aligned} & \text { GM } \\ & k=0.2388 \end{aligned}$ | constant | 0.2700 | 0.0021 | 0.0041 | |
| | w_{1} | 0.9897 | 5.0666 | 38.7957 | |
| | w_{2} | 0.9863 | 5.0159 | 38.3293 | |
| | w_{3} | -0.7591 | 0.9596 | 2.5467 | |
| | DEV=1364.0212 | Total | 11.0442 | 79.6758 | 110.82 |
| $\begin{aligned} & \text { WA } \\ & k=0.1646 \end{aligned}$ | constant | 0.2703 | 0.0018 | 0.0041 | |
| | w_{1} | 1.0829 | 4.6849 | 31.0396 | |
| | w_{2} | 0.9566 | 4.6284 | 30.7351 | |
| | w_{3} | -0.7846 | 0.8845 | 2.8969 | |
| | $\mathrm{DEV}=1363.8115$ | Total | 10.1996 | 64.6756 | 136.53 |

Note: $k_{u b}=11.4834$; results of ridge parameter reported as medians; a ${ }^{\text {a }}$ stimated standardized regression coefficients

Table A.1.9 The Results of the ML and LRR Estimator Performances for $\rho=0.99$ and $n=100$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.3081 | 0.0000 | 0.0439 | |
| | w_{1} | 2.6117 | 0.0000 | 230.0279 | |
| | w_{2} | 0.7746 | 0.0000 | 229.8651 | |
| | w_{3} | -1.8810 | 0.0000 | 4.5715 | |
| | DEV=130.0404 | Total | 0.0000 | 464.5084 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0051 \end{aligned}$ | constant | 0.3027 | 0.0055 | 0.0437 | |
| | w_{1} | 2.2206 | 5.5303 | 84.0022 | |
| | w_{2} | 0.9006 | 5.5849 | 84.1294 | |
| | w_{3} | -1.6678 | 0.2716 | 3.8782 | |
| | DEV=130.2898 | Total | 11.3924 | 172.0535 | 269.98 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0022 \end{aligned}$ | constant | 0.3060 | 0.0021 | 0.0439 | |
| | w_{1} | 2.4420 | 3.6742 | 94.5846 | |
| | w_{2} | 0.8579 | 3.6886 | 94.5330 | |
| | w_{3} | -1.7964 | 0.1145 | 4.2234 | |
| | DEV=130.1182 | Total | 7.4794 | 193.3847 | 240.20 |
| $\begin{aligned} & \mathrm{HKB} \\ & k=0.0083 \end{aligned}$ | constant | 0.3034 | 0.0048 | 0.0437 | |
| | w_{1} | 2.1652 | 6.7060 | 88.5993 | |
| | w_{2} | 1.0195 | 6.7358 | 88.5903 | |
| | w_{3} | -1.6894 | 0.2468 | 3.9217 | |
| | DEV=130.3243 | Total | 13.6935 | 181.1550 | 256.41 |
| $\begin{aligned} & \text { SRW1 } \\ & k=0.0050 \end{aligned}$ | constant | 0.3043 | 0.0039 | 0.0438 | |
| | w_{1} | 2.2635 | 5.5205 | 84.0735 | |
| | w_{2} | 0.9479 | 5.5487 | 84.0834 | |
| | w_{3} | -1.7192 | 0.2090 | 4.0124 | |
| | DEV=130.2328 | Total | 11.2821 | 172.2131 | 269.73 |
| SRW2$k=0.0190$ | constant | 0.3003 | 0.0079 | 0.0437 | |
| | w_{1} | 1.8992 | 8.7525 | 116.7375 | |
| | w_{2} | 1.1088 | 8.8046 | 116.7391 | |
| | w_{3} | -1.5461 | 0.4137 | 3.6772 | |
| | $\mathrm{DEV}=130.6162$ | Total | 17.9787 | 237.1975 | 195.83 |
| $\begin{aligned} & \text { GM } \\ & k=0.1406 \end{aligned}$ | constant | 0.2913 | 0.0171 | 0.0433 | |
| | w_{1} | 1.1996 | 12.1051 | 241.3894 | |
| | w_{2} | 1.1574 | 12.1282 | 239.7083 | |
| | w_{3} | -1.0500 | 0.9738 | 3.1864 | |
| | DEV=131.7032 | Total | 25.2243 | 484.3275 | 95.91 |
| $\begin{aligned} & \text { WA } \\ & k=0.0433 \end{aligned}$ | constant | 0.2957 | 0.0127 | 0.0435 | |
| | w_{1} | 1.5397 | 10.6652 | 174.1364 | |
| | w_{2} | 1.1610 | 10.7497 | 174.0410 | |
| | w_{3} | -1.3240 | 0.6647 | 3.5999 | |
| | DEV=131.1708 | Total | 22.0923 | 351.8207 | 132.03 |

Note: $k_{u b}=6.6929$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.1.10 The Results of the ML and LRR Estimator Performances for $\rho=0.99$ and $n=200$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2868 | 0.0000 | 0.0211 | |
| | w_{1} | 2.1554 | 0.0000 | 218.3029 | |
| | w_{2} | 1.1403 | 0.0000 | 218.2959 | |
| | w_{3} | -1.6564 | 0.0000 | 4.3001 | |
| | DEV=267.0747 | Total | 0.0000 | 440.9201 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0049 \end{aligned}$ | constant | 0.2843 | 0.0026 | 0.0210 | |
| | w_{1} | 2.0320 | 5.4607 | 78.7929 | |
| | w_{2} | 1.0341 | 5.4857 | 78.8755 | |
| | w_{3} | -1.5132 | 0.2300 | 3.6678 | |
| | DEV=267.3185 | Total | 11.1790 | 161.3573 | 273.26 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0023 \end{aligned}$ | constant | 0.2858 | 0.0010 | 0.0211 | |
| | w_{1} | 2.1797 | 3.7206 | 87.5826 | |
| | w_{2} | 1.0422 | 3.7309 | 87.6117 | |
| | w_{3} | -1.5955 | 0.0957 | 3.9777 | |
| | DEV=267.1576 | Total | 7.5483 | 179.1931 | 246.06 |
| $\begin{aligned} & \text { HKB } \\ & k=0.0085 \end{aligned}$ | constant | 0.2845 | 0.0023 | 0.0211 | |
| | w_{1} | 1.9692 | 6.7624 | 84.0956 | |
| | w_{2} | 1.1502 | 6.7822 | 84.1608 | |
| | w_{3} | -1.5194 | 0.2066 | 3.6900 | |
| | DEV=267.3735 | Total | 13.7535 | 171.9675 | 256.40 |
| $\begin{aligned} & \text { SRW1 } \\ & k=0.0049 \end{aligned}$ | constant | 0.2850 | 0.0018 | 0.0211 | |
| | w_{1} | 2.0745 | 5.4367 | 78.8007 | |
| | w_{2} | 1.0777 | 5.4563 | 78.8715 | |
| | w_{3} | -1.5441 | 0.1699 | 3.7985 | |
| | DEV=267.2666 | Total | 11.0647 | 161.4917 | 273.03 |
| SRW2$k=0.0188$ | constant | 0.2831 | 0.0038 | 0.0210 | |
| | w_{1} | 1.7797 | 8.6044 | 108.8197 | |
| | w_{2} | 1.1939 | 8.6400 | 108.9367 | |
| | w_{3} | -1.4173 | 0.3430 | 3.4599 | |
| | DEV=267.6407 | Total | 17.5912 | 221.2373 | 199.30 |
| $\begin{aligned} & \text { GM } \\ & k=0.1516 \end{aligned}$ | constant | 0.2786 | 0.0082 | 0.0209 | |
| | w_{1} | 1.2061 | 11.8468 | 220.5848 | |
| | w_{2} | 1.2004 | 11.8829 | 220.0011 | |
| | w_{3} | -1.0137 | 0.8223 | 2.6725 | |
| | DEV=268.6075 | Total | 24.5603 | 443.2794 | 99.47 |
| $\begin{aligned} & \text { WA } \\ & k=0.0417 \end{aligned}$ | constant | 0.2807 | 0.0062 | 0.0210 | |
| | w_{1} | 1.4911 | 10.4655 | 160.5676 | |
| | w_{2} | 1.2110 | 10.5333 | 160.7669 | |
| | w_{3} | -1.2401 | 0.5649 | 3.3289 | |
| | DEV=268.1691 | Total | 21.5699 | 324.6844 | 135.80 |

Note: $k_{u b}=8.3298$; results of ridge parameter reported as medians; a estimated standardized regression coefficients

Table A.1.11 The Results of the ML and LRR Estimator Performances for $\rho=0.99$ and $n=500$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2338 | 0.0000 | 0.0082 | |
| | w_{1} | 2.1460 | 0.0000 | 208.7358 | |
| | w_{2} | 1.0567 | 0.0000 | 208.7251 | |
| | w_{3} | -1.6437 | 0.0000 | 4.1409 | |
| | DEV $=680.7125$ | Total | 0.0000 | 421.6100 | 100.00 |
| KOPT | constant | 0.2333 | 0.0005 | 0.0082 | |
| $k=0.0053$ | w_{1} | 1.7353 | 6.2579 | 66.4014 | |
| | w_{2} | 1.3925 | 6.2453 | 66.3074 | |
| | w_{3} | -1.5740 | 0.1032 | 3.8826 | |
| | DEV $=680.9225$ | Total | 12.6069 | 136.5995 | 308.65 |
| HK | constant | 0.2335 | 0.0003 | 0.0082 | |
| $k=0.0026$ | w_{1} | 1.8500 | 4.7000 | 74.0362 | |
| | w_{2} | 1.3202 | 4.6948 | 73.9960 | |
| | w_{3} | -1.6121 | 0.0520 | 4.0059 | |
| | DEV $=680.8230$ | Total | 9.4471 | 152.0461 | 277.29 |
| HKB | constant | 0.2332 | 0.0006 | 0.0082 | |
| $k=0.0099$ | w_{1} | 1.6662 | 7.4605 | 71.4128 | |
| | w_{2} | 1.4401 | 7.4463 | 71.2771 | |
| | w_{3} | -1.5522 | 0.1303 | 3.7601 | |
| | DEV $=681.0108$ | Total | 15.0377 | 146.4582 | 287.87 |
| SRW1 | constant | 0.2333 | 0.0004 | 0.0082 | |
| $k=0.0053$ | w_{1} | 1.7419 | 6.2420 | 66.4095 | |
| | w_{2} | 1.3966 | 6.2314 | 66.3216 | |
| | w_{3} | -1.5815 | 0.0931 | 3.8972 | |
| | DEV $=680.9144$ | Total | 12.5670 | 136.6365 | 308.56 |
| SRW2 | constant | 0.2330 | 0.0008 | 0.0082 | |
| $k=0.0198$ | w_{1} | 1.5697 | 8.4894 | 83.1276 | |
| | w_{2} | 1.4477 | 8.4618 | 82.8461 | |
| | w_{3} | -1.4718 | 0.2311 | 3.5109 | |
| | DEV=681.1348 | Total | 17.1832 | 169.4928 | 248.75 |
| | constant | 0.2315 | 0.0023 | 0.0082 | |
| $k=0.1632$ | w_{1} | 1.2062 | 9.7855 | 108.8929 | |
| | w_{2} | 1.1735 | 9.6988 | 107.7686 | |
| | w_{3} | -1.0472 | 0.8081 | 2.3952 | |
| | DEV=681.7209 | Total | 20.2947 | 219.0648 | 192.46 |
| WA | constant | 0.2325 | 0.0013 | 0.0082 | |
| $k=0.0446$ | w_{1} | 1.4356 | 9.2691 | 96.9684 | |
| | w_{2} | 1.3784 | 9.2078 | 96.3313 | |
| | w_{3} | -1.2979 | 0.4475 | 3.2152 | |
| | DEV $=681.3534$ | Total | 18.9257 | 196.5232 | 214.53 |

Note: $k_{u b}=11.5859$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.1.12 The Results of the ML and LRR Estimator Performances for $\rho=0.99$ and $n=1000$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2717 | 0.0000 | 0.0041 | |
| | w_{1} | 2.0809 | 0.0000 | 207.5837 | |
| | w_{2} | 0.8897 | 0.0000 | 207.5749 | |
| | w_{3} | -1.5778 | 0.0000 | 4.1206 | |
| | $\mathrm{DEV}=1362.6041$ | Total | 0.0000 | 419.2833 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0050 \end{aligned}$ | constant | 0.2712 | 0.0005 | 0.0041 | |
| | w_{1} | 1.8036 | 5.3266 | 73.5617 | |
| | w_{2} | 0.9551 | 5.3209 | 73.5608 | |
| | w_{3} | -1.4348 | 0.2058 | 3.4656 | |
| | $\mathrm{DEV}=1362.8503$ | Total | 10.8538 | 150.5921 | 278.42 |
| HK | constant | 0.2715 | 0.0002 | 0.0041 | |
| $k=0.0025$ | w_{1} | 1.9258 | 3.8065 | 80.2250 | |
| | w_{2} | 0.9728 | 3.8012 | 80.2039 | |
| | w_{3} | -1.5157 | 0.0912 | 3.7668 | |
| | DEV=1362.6963 | Total | 7.6990 | 164.1998 | 255.35 |
| HKB | constant | 0.2713 | 0.0005 | 0.0041 | |
| $k=0.0093$ | w_{1} | 1.7696 | 6.7742 | 79.9804 | |
| | w_{2} | 1.0365 | 6.7631 | 79.9248 | |
| | w_{3} | -1.4426 | 0.1914 | 3.4780 | |
| | $\mathrm{DEV}=1362.9211$ | Total | 13.7292 | 163.3873 | 256.62 |
| SRW1 | constant | 0.2714 | 0.0003 | 0.0041 | |
| $k=0.0050$ | w_{1} | 1.8439 | 5.3074 | 73.5756 | |
| | w_{2} | 0.9969 | 5.2982 | 73.5455 | |
| | w_{3} | -1.4707 | 0.1539 | 3.6060 | |
| | DEV=1362.7987 | Total | 10.7598 | 150.7313 | 278.17 |
| | constant | 0.2710 | 0.0007 | 0.0041 | |
| $k=0.0183$ | w_{1} | 1.6230 | 8.3358 | 101.1638 | |
| | w_{2} | 1.0675 | 8.3198 | 101.0625 | |
| | w_{3} | -1.3562 | 0.3059 | 3.2766 | |
| | DEV=1363.1549 | Total | 16.9621 | 205.5069 | 204.02 |
| GM | constant | 0.2701 | 0.0016 | 0.0041 | |
| $k=0.1635$ | w_{1} | 1.1345 | 11.4379 | 204.3483 | |
| | w_{2} | 1.0816 | 11.3816 | 202.8520 | |
| | w_{3} | -1.0020 | 0.7872 | 2.4299 | |
| | $\mathrm{DEV}=1364.0300$ | Total | 23.6083 | 409.6343 | 102.36 |
| WA | constant | 0.2706 | 0.0012 | 0.0041 | |
| $k=0.0415$ | w_{1} | 1.3660 | 10.1202 | 149.0197 | |
| | w_{2} | 1.0935 | 10.1003 | 148.7959 | |
| | w_{3} | -1.1937 | 0.5130 | 3.1266 | |
| | DEV $=1363.6378$ | Total | 20.7346 | 300.9463 | 139.32 |

Note: $k_{u b}=11.5986$; results of ridge parameter reported as medians; a ${ }^{\text {a }}$ stimated standardized regression coefficients

A. 2 The Results of the Simulation Study in case of Five Explanatory Variables

Table A.2.1 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.90, \rho_{34}=0.90$ and $n=100$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.4027 | 0.0000 | 0.0462 | |
| | w_{1} | 2.8366 | 0.0000 | 25.1127 | |
| | w_{2} | 0.7594 | 0.0000 | 25.0471 | |
| | w_{3} | -1.8464 | 0.0000 | 25.4739 | |
| | w_{4} | 3.1873 | 0.0000 | 25.5151 | |
| | w_{5} | -1.5365 | 0.0000 | 4.8319 | |
| | DEV $=126.0612$ | Total | 0.0000 | 106.0269 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0247 \end{aligned}$ | constant | 0.3886 | 0.0142 | 0.0460 | |
| | w_{1} | 2.2178 | 1.9133 | 12.0266 | |
| | w_{2} | 0.9021 | 1.8625 | 11.7683 | |
| | w_{3} | -1.0284 | 2.0226 | 12.4461 | |
| | w_{4} | 2.1912 | 2.0563 | 12.6080 | |
| | w_{5} | -1.2702 | 0.4123 | 3.6956 | |
| | DEV $=126.6439$ | Total | 8.2812 | 52.5905 | 201.61 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0059 \end{aligned}$ | constant | 0.3982 | 0.0045 | 0.0461 | |
| | w_{1} | 2.6294 | 0.8197 | 15.6367 | |
| | w_{2} | 0.8389 | 0.8075 | 15.5527 | |
| | w_{3} | -1.5258 | 0.8636 | 15.8671 | |
| | w_{4} | 2.8195 | 0.8729 | 15.9170 | |
| | w_{5} | -1.4568 | 0.1276 | 4.3710 | |
| | DEV $=126.1527$ | Total | 3.4959 | 67.3906 | 157.33 |
| $\begin{aligned} & \text { HKB } \\ & k=0.0235 \end{aligned}$ | constant | 0.3903 | 0.0125 | 0.0460 | |
| | w_{1} | 2.2534 | 1.8968 | 12.0640 | |
| | w_{2} | 0.9844 | 1.8576 | 11.8435 | |
| | w_{3} | -0.9478 | 2.0479 | 12.7429 | |
| | w_{4} | 2.1542 | 2.0783 | 12.9097 | |
| | w_{5} | -1.3168 | 0.3405 | 3.7794 | |
| | DEV $=126.5593$ | Total | 8.2335 | 53.3854 | 198.61 |
| SRW1$k=0.0144$ | constant | 0.3934 | 0.0094 | 0.0460 | |
| | w_{1} | 2.4282 | 1.4521 | 12.6869 | |
| | w_{2} | 0.8936 | 1.4240 | 12.5447 | |
| | w_{3} | -1.2182 | 1.5417 | 13.0013 | |
| | w_{4} | 2.4570 | 1.5622 | 13.0947 | |
| | w_{5} | -1.3689 | 0.2627 | 4.0086 | |
| | DEV $=126.3557$ | Total | 6.2520 | 55.3821 | 191.45 |
| SRW2$k=0.0578$ | constant | 0.3811 | 0.0219 | 0.0461 | |
| | w_{1} | 1.8689 | 2.7638 | 13.9794 | |
| | w_{2} | 1.0320 | 2.6826 | 13.4140 | |
| | w_{3} | -0.4817 | 2.9788 | 15.5549 | |
| | w_{4} | 1.5604 | 3.0408 | 15.9891 | |
| | w_{5} | -1.1249 | 0.6168 | 3.3272 | |
| | DEV=127.2638 | Total | 12.1047 | 62.3107 | 170.16 |

Table A.2.1 (Continued)

Method	Variable	${ }^{\text {a }}$ Coef.	\mid Bias	MSE	RE
GM	constant	0.3680	0.0352	0.0464	
$k=0.1756$	w_{1}	1.2850	3.7058	22.0825	
	w_{2}	1.0458	3.5337	20.0272	
	w_{3}	0.1048	3.9957	26.3218	
	w_{4}	0.7179	4.1633	28.3147	
WA	w_{5}	-0.8210	1.0077	3.0907	
$k=0.1533$		Total	16.4414	99.8833	106.15
	DEV=128.8027				
	constant	0.3675	0.0357	0.0464	
	w_{1}	1.3496	3.6081	20.0828	
	w_{2}	0.9665	3.4519	18.6442	
	w_{3}	-0.0443	3.8521	23.3037	
	w_{4}	0.9008	3.9746	24.4224	
	w_{5}	-0.8218	1.0358	3.2573	
	DEV $=128.6212$	Total	15.9582	89.7568	118.13

Note: $k_{u b}=6.8765$; results of ridge parameter reported as medians; astimated standardized regression coefficients

Table A.2.2 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.90, \rho_{34}=0.90$ and $n=200$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.3341 | 0.0000 | 0.0215 | |
| | w_{1} | 1.9298 | 0.0000 | 23.0035 | |
| | w_{2} | 1.0494 | 0.0000 | 22.9942 | |
| | w_{3} | -1.1465 | 0.0000 | 23.0413 | |
| | w_{4} | 2.2041 | 0.0000 | 23.0598 | |
| | w_{5} | -1.1753 | 0.0000 | 4.3984 | |
| | DEV=263.9890 | Total | 0.0000 | 96.5187 | 100.00 |
| KOPT | constant | 0.3285 | 0.0056 | 0.0214 | |
| $k=0.0322$ | w_{1} | 1.5726 | 1.9270 | 10.6715 | |
| | w_{2} | 1.0549 | 1.9253 | 10.6423 | |
| | w_{3} | -0.5932 | 1.8667 | 10.4741 | |
| | w_{4} | 1.5289 | 1.8906 | 10.5482 | |
| | w_{5} | -0.9476 | 0.3700 | 3.3220 | |
| | DEV=264.5599 | Total | 7.9852 | 45.6795 | 211.30 |
| HK | constant | 0.3322 | 0.0019 | 0.0215 | |
| $k=0.0085$ | w_{1} | 1.8110 | 0.8992 | 13.6383 | |
| | w_{2} | 1.0712 | 0.8948 | 13.6311 | |
| | w_{3} | -0.9258 | 0.8546 | 13.5412 | |
| | w_{4} | 1.9511 | 0.8620 | 13.5692 | |
| | w_{5} | -1.1083 | 0.1169 | 3.9514 | |
| | DEV=264.0962 | Total | 3.6295 | 58.3527 | 165.41 |
| HKB | constant | 0.3290 | 0.0051 | 0.0214 | |
| $k=0.0332$ | w_{1} | 1.5990 | 1.9789 | 10.8090 | |
| | w_{2} | 1.1000 | 1.9686 | 10.7503 | |
| | w_{3} | -0.5108 | 1.9249 | 10.6494 | |
| | w_{4} | 1.4733 | 1.9434 | 10.7107 | |
| | w_{5} | -0.9866 | 0.3160 | 3.3501 | |
| | DEV=264.5185 | Total | 8.1369 | 46.2909 | 208.50 |
| SRW1 | constant | 0.3304 | 0.0036 | 0.0214 | |
| $k=0.0188$ | w_{1} | 1.7023 | 1.4763 | 11.2836 | |
| | w_{2} | 1.0764 | 1.4724 | 11.2714 | |
| | w_{3} | -0.7462 | 1.4153 | 11.0819 | |
| | w_{4} | 1.7359 | 1.4299 | 11.1272 | |
| | w_{5} | -1.0417 | 0.2269 | 3.6218 | |
| | DEV=264.2860 | Total | 6.0245 | 48.4074 | 199.39 |
| SRW2 | constant | 0.3256 | 0.0085 | 0.0214 | |
| $k=0.0732$ | w_{1} | 1.3932 | 2.7030 | 12.6282 | |
| | w_{2} | 1.0567 | 2.6888 | 12.4916 | |
| | w_{3} | -0.2390 | 2.6367 | 12.4348 | |
| | w_{4} | 1.1143 | 2.6719 | 12.5821 | |
| | w_{5} | -0.8435 | 0.5466 | 2.9208 | |
| | DEV $=265.1143$ | Total | 11.2555 | 53.0789 | 181.84 |

Table A.2.2 (Continued)

Method	Variable	${ }^{\text {a Coef. }}$	\mid Bias	MSE	RE
GM	constant	0.3197	0.0144	0.0214	
$k=0.2147$	w_{1}	1.0429	3.5541	19.7841	
	w_{2}	0.9225	3.5297	19.5741	
	w_{3}	0.1699	3.4835	19.8101	
	w_{4}	0.5298	3.5567	20.5222	
WA	w_{5}	-0.5846	0.9403	2.7682	
$k=0.1904$		Total	15.0787	82.4802	117.02
	DEV=266.5182				
	constant	0.3201	0.0140	0.0214	
	w_{1}	1.0634	3.4449	18.0254	
	w_{2}	0.9080	3.4171	17.6877	
	w_{3}	0.0433	3.3558	17.7315	
	w_{4}	0.6625	3.4235	18.1956	
	w_{5}	-0.6036	0.9222	2.7717	
	DEV=266.3062	Total	14.5774	74.4333	129.67

Note: $k_{u b}=9.0394$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.2.3 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.90, \rho_{34}=0.90$ and $n=500$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2651 | 0.0000 | 0.0083 | |
| | w_{1} | 1.6139 | 0.0000 | 21.8392 | |
| | w_{2} | 0.8327 | 0.0000 | 21.8409 | |
| | w_{3} | -1.2352 | 0.0000 | 21.9014 | |
| | w_{4} | 2.0367 | 0.0000 | 21.9134 | |
| | w_{5} | -1.0238 | 0.0000 | 4.1698 | |
| | DEV $=677.5409$ | Total | 0.0000 | 91.6729 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0333 \end{aligned}$ | constant | 0.2633 | 0.0018 | 0.0083 | |
| | w_{1} | 1.3209 | 1.7834 | 9.7136 | |
| | w_{2} | 0.8473 | 1.7683 | 9.6587 | |
| | w_{3} | -0.5934 | 1.9526 | 10.3072 | |
| | w_{4} | 1.3158 | 1.9524 | 10.3513 | |
| | w_{5} | -0.8573 | 0.3268 | 3.0999 | |
| | DEV $=678.1039$ | Total | 7.7853 | 43.1390 | 212.51 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0088 \end{aligned}$ | constant | 0.2644 | 0.0006 | 0.0083 | |
| | w_{1} | 1.5126 | 0.8686 | 12.5264 | |
| | w_{2} | 0.8544 | 0.8617 | 12.5133 | |
| | w_{3} | -0.9397 | 0.9423 | 12.6615 | |
| | w_{4} | 1.7197 | 0.9426 | 12.6720 | |
| | w_{5} | -0.9672 | 0.1085 | 3.7134 | |
| | DEV=677.6580 | Total | 3.7244 | 54.0949 | 169.47 |
| $\begin{aligned} & \mathrm{HKB} \\ & k=0.0372 \end{aligned}$ | constant | 0.2634 | 0.0017 | 0.0083 | |
| | w_{1} | 1.3253 | 1.8929 | 9.7546 | |
| | w_{2} | 0.8941 | 1.8811 | 9.7130 | |
| | w_{3} | -0.5208 | 2.0922 | 10.5879 | |
| | w_{4} | 1.2567 | 2.0930 | 10.6193 | |
| | w_{5} | -0.8761 | 0.2909 | 3.0973 | |
| | DEV $=678.1085$ | Total | 8.2517 | 43.7803 | 209.39 |
| SRW1$k=0.0183$ | constant | 0.2640 | 0.0011 | 0.0083 | |
| | w_{1} | 1.4361 | 1.3519 | 10.4389 | |
| | w_{2} | 0.8575 | 1.3416 | 10.4097 | |
| | w_{3} | -0.7579 | 1.4718 | 10.7517 | |
| | w_{4} | 1.5169 | 1.4731 | 10.7724 | |
| | w_{5} | -0.9191 | 0.1991 | 3.4260 | |
| | DEV=677.8306 | Total | 5.8387 | 45.8069 | 200.13 |
| SRW2$k=0.0781$ | constant | 0.2624 | 0.0027 | 0.0083 | |
| | w_{1} | 1.1671 | 2.4981 | 11.1230 | |
| | w_{2} | 0.8695 | 2.4778 | 11.0432 | |
| | w_{3} | -0.2781 | 2.7558 | 12.5934 | |
| | w_{4} | 0.9576 | 2.7608 | 12.6921 | |
| | w_{5} | -0.7710 | 0.4867 | 2.7052 | |
| | DEV $=678.6442$ | Total | 10.9818 | 50.1652 | 182.74 |

Table A.2.3 (Continued)

Method	Variable	${ }^{\text {a }}$ Coef.	\mid Bias	MSE	RE
GM	constant	0.2602	0.0048	0.0082	
$k=0.2588$	w_{1}	0.8291	3.3694	17.9653	
	w_{2}	0.7738	3.3250	17.6306	
	w_{3}	0.1063	3.7074	20.7325	
	w_{4}	0.4214	3.7232	21.2305	
WA	w_{5}	-0.5500	0.9061	2.3398	
$k=0.2013$		Total	15.0359	79.9069	114.72
	DEV=680.0756				
	constant	0.2607	0.0044	0.0082	
	w_{1}	0.8896	3.1907	15.7318	
	w_{2}	0.7612	3.1601	15.5594	
	w_{3}	-0.0104	3.4954	17.9968	
	w_{4}	0.5638	3.5232	18.3726	
	w_{5}	-0.5671	0.8464	2.4982	
	DEV=679.7693	Total	14.2201	70.1671	130.65

Note: $k_{u b}=12.6166$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.2.4 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.90, \rho_{34}=0.90$ and $n=1,000$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.3126 | 0.0000 | 0.0041 | |
| | w_{1} | 1.8427 | 0.0000 | 21.7771 | |
| | w_{2} | 0.9368 | 0.0000 | 21.7734 | |
| | w_{3} | -1.5380 | 0.0000 | 21.8117 | |
| | w_{4} | 2.6285 | 0.0000 | 21.8157 | |
| | w_{5} | -1.0408 | 0.0000 | 4.1493 | |
| | DEV=1355.0308 | Total | 0.0000 | 91.3313 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0317 \end{aligned}$ | constant | 0.3115 | 0.0011 | 0.0041 | |
| | w_{1} | 1.5166 | 1.7593 | 9.5514 | |
| | w_{2} | 0.9202 | 1.7622 | 9.5151 | |
| | w_{3} | -0.8244 | 1.8415 | 9.8517 | |
| | w_{4} | 1.7673 | 1.8691 | 9.9511 | |
| | w_{5} | -0.8470 | 0.3407 | 3.0623 | |
| | $\mathrm{DEV}=1355.6090$ | Total | 7.5738 | 41.9358 | 217.79 |
| $\begin{aligned} & \text { HK } \\ & k=0.0092 \end{aligned}$ | constant | 0.3122 | 0.0004 | 0.0041 | |
| | w_{1} | 1.7350 | 0.8607 | 12.2472 | |
| | w_{2} | 0.9494 | 0.8618 | 12.2399 | |
| | w_{3} | -1.2263 | 0.8887 | 12.3058 | |
| | w_{4} | 2.2757 | 0.8985 | 12.3249 | |
| | w_{5} | -0.9797 | 0.1111 | 3.6807 | |
| | DEV=1355.1459 | Total | 3.6211 | 52.8026 | 172.97 |
| $\begin{aligned} & \text { HKB } \\ & k=0.0359 \end{aligned}$ | constant | 0.3115 | 0.0010 | 0.0041 | |
| | w_{1} | 1.5424 | 1.8435 | 9.6026 | |
| | w_{2} | 0.9688 | 1.8461 | 9.5721 | |
| | w_{3} | -0.7246 | 1.9489 | 10.0592 | |
| | w_{4} | 1.6974 | 1.9755 | 10.1667 | |
| | w_{5} | -0.8770 | 0.2942 | 3.0814 | |
| | $\mathrm{DEV}=1355.5846$ | Total | 7.9092 | 42.4862 | 214.97 |
| SRW1$k=0.0194$ | constant | 0.3119 | 0.0007 | 0.0041 | |
| | w_{1} | 1.6427 | 1.3420 | 10.1769 | |
| | w_{2} | 0.9502 | 1.3444 | 10.1606 | |
| | w_{3} | -1.0038 | 1.4020 | 10.3571 | |
| | w_{4} | 2.0154 | 1.4204 | 10.4078 | |
| | w_{5} | -0.9262 | 0.2064 | 3.3779 | |
| | DEV=1355.3249 | Total | 5.7159 | 44.4844 | 205.31 |
| SRW2$k=0.0753$ | constant | 0.3109 | 0.0016 | 0.0041 | |
| | w_{1} | 1.3579 | 2.4412 | 10.8814 | |
| | w_{2} | 0.9349 | 2.4400 | 10.7885 | |
| | w_{3} | -0.4019 | 2.6009 | 11.9862 | |
| | w_{4} | 1.2837 | 2.6502 | 12.2610 | |
| | w_{5} | -0.7641 | 0.4949 | 2.6890 | |
| | $\mathrm{DEV}=1356.1418$ | Total | 10.6289 | 48.6102 | 187.89 |

Table A.2.4 (Continued)

Method	Variable	${ }^{\text {a Coef. }}$	\mid Bias	MSE	RE
	constant	0.3098	0.0028	0.0041	
	w_{1}	1.0165	3.2365	17.0472	
	w_{2}	0.8522	3.2131	16.6309	
	w_{3}	0.0534	3.4530	19.2832	
WA	w_{4}	0.6442	3.5649	20.3364	
$k=0.1953$	w_{5}	-0.5643	0.8394	2.2272	
		Total	14.3098	75.5289	120.92
	DEV $=1357.4274$				
	w_{1}	1.0265	3.1321	15.4266	
	w_{2}	0.8193	3.1131	15.0906	
	w_{3}	-0.0415	3.3364	17.4634	
	w_{4}	0.7431	3.4330	18.2913	
	w_{5}	-0.5593	0.8522	2.4668	
	$\mathrm{DEV}=1357.3286$	Total	13.8696	68.7428	132.86

Note: $k_{u b}=12.2580$; results of ridge parameter reported as medians; a estimated standardized regression coefficients

Table A.2.5 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.99, \rho_{34}=0.90$ and $n=100$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.3956 | 0.0000 | 0.0463 | |
| | w_{1} | 2.4569 | 0.0000 | 250.3804 | |
| | w_{2} | 1.3547 | 0.0000 | 250.2962 | |
| | w_{3} | -2.0037 | 0.0000 | 25.4287 | |
| | w_{4} | 3.1694 | 0.0000 | 25.4930 | |
| | w_{5} | -1.7626 | 0.0000 | 4.8530 | |
| | DEV $=125.8812$ | Total | 0.0000 | 556.4976 | 100.00 |
| KOPT | constant | 0.3867 | 0.0091 | 0.0461 | |
| $k=0.0052$ | w_{1} | 2.2450 | 6.1029 | 93.1235 | |
| | w_{2} | 1.3052 | 6.1000 | 93.0933 | |
| | w_{3} | -1.4877 | 1.1854 | 17.1834 | |
| | w_{4} | 2.5703 | 1.1892 | 17.2675 | |
| | w_{5} | -1.5720 | 0.2720 | 4.2737 | |
| | DEV=126.2472 | Total | 14.8585 | 224.9876 | 247.35 |
| HK | constant | 0.3923 | 0.0034 | 0.0462 | |
| $k=0.0016$ | w_{1} | 2.3734 | 3.7274 | 109.9871 | |
| | w_{2} | 1.3725 | 3.7263 | 109.9396 | |
| | w_{3} | -1.7899 | 0.5179 | 20.1907 | |
| | w_{4} | 2.9334 | 0.5189 | 20.2616 | |
| | w_{5} | -1.7080 | 0.0905 | 4.6232 | |
| | DEV $=125.9689$ | Total | 8.8544 | 265.0484 | 209.96 |
| HKB | constant | 0.3865 | 0.0092 | 0.0462 | |
| $k=0.0074$ | w_{1} | 2.2387 | 7.7903 | 104.9629 | |
| | w_{2} | 1.3780 | 7.7851 | 104.8807 | |
| | w_{3} | -1.4088 | 1.3035 | 16.2154 | |
| | w_{4} | 2.5120 | 1.3144 | 16.3089 | |
| | w_{5} | -1.6100 | 0.2371 | 4.3066 | |
| | $\mathrm{DEV}=126.3175$ | Total | 18.4396 | 246.7207 | 225.56 |
| SRW1$k=0.0041$ | constant | 0.3891 | 0.0066 | 0.0462 | |
| | w_{1} | 2.2948 | 5.8572 | 93.6427 | |
| | w_{2} | 1.3733 | 5.8528 | 93.5624 | |
| | w_{3} | -1.5850 | 0.9590 | 17.8044 | |
| | w_{4} | 2.7035 | 0.9654 | 17.8844 | |
| | w_{5} | -1.6466 | 0.1786 | 4.4394 | |
| | DEV=126.1247 | Total | 13.8196 | 227.3795 | 244.74 |
| SRW2 | constant | 0.3802 | 0.0156 | 0.0462 | |
| $k=0.0186$ | w_{1} | 2.0094 | 9.9451 | 144.7054 | |
| | w_{2} | 1.4130 | 9.9303 | 144.5000 | |
| | w_{3} | -1.0079 | 2.0754 | 15.6295 | |
| | w_{4} | 2.0494 | 2.0957 | 15.8335 | |
| | w_{5} | -1.4708 | 0.4210 | 4.0250 | |
| | $\mathrm{DEV}=126.7958$ | Total | 24.4830 | 324.7396 | 171.37 |

Table A.2.5 (Continued)

Method	Variable	${ }^{\text {a Coef. }}$	\mid Bias	MSE	RE
GM	constant	0.3658	0.0301	0.0466	
$k=0.1102$	w_{1}	1.4182	12.6553	263.4700	
	w_{2}	1.3914	12.5859	261.2868	
	w_{3}	-0.0676	3.6272	22.1830	
	w_{4}	0.8935	3.7509	23.4573	
	w_{5}	-1.0844	0.8737	3.2672	
		Total	33.5232	573.7109	97.00
$k=0.0443$				0.0244	0.0465
	DEV=128.2829	w_{1}	1.6774	11.6432	207.3713
	w_{2}	1.4124	11.6225	206.9010	
	w_{3}	-0.5195	2.9551	18.4481	
	w_{4}	1.4538	2.9958	18.9664	
	w_{5}	-1.2505	0.6958	3.8880	
		Total	29.9369	455.6211	122.14

Note: $k_{u b}=6.7896$; results of ridge parameter reported as medians; ${ }^{\text {a }}$ estimated standardized regression coefficients

Table A.2.6 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.99, \rho_{34}=0.90$ and $n=200$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.3304 | 0.0000 | 0.0215 | |
| | w_{1} | 1.7310 | 0.0000 | 224.5251 | |
| | w_{2} | 1.0618 | 0.0000 | 224.5003 | |
| | w_{3} | -1.4547 | 0.0000 | 23.1174 | |
| | w_{4} | 2.5626 | 0.0000 | 23.1423 | |
| | w_{5} | -1.2865 | 0.0000 | 4.3952 | |
| | DEV=264.1144 | Total | 0.0000 | 499.7017 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0047 \end{aligned}$ | constant | 0.3270 | 0.0034 | 0.0214 | |
| | w_{1} | 1.5962 | 5.8673 | 86.1817 | |
| | w_{2} | 1.0595 | 5.8785 | 86.2325 | |
| | w_{3} | -1.0485 | 0.9942 | 15.8317 | |
| | w_{4} | 2.0865 | 1.0203 | 15.9228 | |
| | w_{5} | -1.1810 | 0.1958 | 3.8604 | |
| | DEV=264.4507 | Total | 13.9595 | 208.0505 | 240.18 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0017 \end{aligned}$ | constant | 0.3291 | 0.0014 | 0.0215 | |
| | w_{1} | 1.7035 | 3.7260 | 98.6046 | |
| | w_{2} | 1.0537 | 3.7277 | 98.6062 | |
| | w_{3} | -1.2932 | 0.4557 | 18.4551 | |
| | w_{4} | 2.3850 | 0.4597 | 18.4807 | |
| | w_{5} | -1.2549 | 0.0667 | 4.2063 | |
| | DEV=264.2082 | Total | 8.4371 | 238.3743 | 209.63 |
| HKB$k=0.0082$ | constant | 0.3267 | 0.0037 | 0.0214 | |
| | w_{1} | 1.4799 | 7.8596 | 100.0370 | |
| | w_{2} | 1.1994 | 7.8701 | 100.0810 | |
| | w_{3} | -0.9502 | 1.1751 | 14.5276 | |
| | w_{4} | 2.0053 | 1.1912 | 14.6038 | |
| | w_{5} | -1.1948 | 0.1756 | 3.8848 | |
| | DEV=264.5865 | Total | 18.2754 | 233.1556 | 214.32 |
| SRW1$k=0.0039$ | constant | 0.3280 | 0.0025 | 0.0214 | |
| | w_{1} | 1.6104 | 5.6374 | 86.6257 | |
| | w_{2} | 1.1084 | 5.6407 | 86.6353 | |
| | w_{3} | -1.1443 | 0.7995 | 16.4633 | |
| | w_{4} | 2.2207 | 0.8079 | 16.5037 | |
| | w_{5} | -1.2249 | 0.1209 | 4.0576 | |
| | DEV $=264.3480$ | Total | 13.0088 | 210.3072 | 237.61 |
| SRW2$k=0.0186$ | constant | 0.3246 | 0.0059 | 0.0214 | |
| | w_{1} | 1.3508 | 9.7971 | 135.5886 | |
| | w_{2} | 1.2216 | 9.8147 | 135.6581 | |
| | w_{3} | -0.6648 | 1.7769 | 13.5632 | |
| | w_{4} | 1.6748 | 1.8098 | 13.7446 | |
| | w_{5} | -1.1173 | 0.2952 | 3.5921 | |
| | DEV=264.9969 | Total | 23.4995 | 302.1681 | 165.37 |

Table A.2.6 (Continued)

Method	Variable	${ }^{\text {a }}$ Coef.	\mid Bias	MSE	RE
GM	constant	0.3178	0.0126	0.0214	
$k=0.1390$	w_{1}	1.0455	12.4808	237.2729	
	w_{2}	1.0360	12.5314	237.8926	
	w_{3}	0.0675	3.3988	18.9067	
	w_{4}	0.7236	3.4916	19.8215	
WA	w_{5}	-0.8157	0.7691	2.6322	
$k=0.0458$		Total	32.6844	516.5474	96.74
	DEV $=266.4642$				
	constant	0.3214	0.0090	0.0214	
	w_{1}	1.2114	11.4731	190.7445	
	w_{2}	1.1552	11.4971	190.8717	
	w_{3}	-0.2885	2.5671	14.8952	
	w_{4}	1.2100	2.6229	15.3857	
	w_{5}	-0.9776	0.5038	3.2731	
	DEV $=265.7009$	Total	28.6730	415.1917	120.35

Note: $k_{u b}=9.0181$; results of ridge parameter reported as medians; ${ }^{\text {a }}$ estimated standardized regression coefficients

Table A.2.7 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.99, \rho_{34}=0.90$ and $n=500$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.2615 | 0.0000 | 0.0083 | |
| | w_{1} | 1.6732 | 0.0000 | 211.3365 | |
| | w_{2} | 0.8831 | 0.0000 | 211.3355 | |
| | w_{3} | -1.2852 | 0.0000 | 21.8253 | |
| | w_{4} | 2.2428 | 0.0000 | 21.8337 | |
| | w_{5} | -0.9525 | 0.0000 | 4.1692 | |
| | DEV=677.8282 | Total | 0.0000 | 470.5084 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0059 \end{aligned}$ | constant | 0.2604 | 0.0011 | 0.0083 | |
| | w_{1} | 1.7159 | 5.5622 | 75.6525 | |
| | w_{2} | 0.6962 | 5.5745 | 75.7392 | |
| | w_{3} | -0.9296 | 0.9663 | 14.3284 | |
| | w_{4} | 1.8288 | 0.9846 | 14.3828 | |
| | w_{5} | -0.8636 | 0.1936 | 3.6276 | |
| | $\mathrm{DEV}=678.1681$ | Total | 13.2823 | 183.7387 | 256.07 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0023 \end{aligned}$ | constant | 0.2610 | 0.0004 | 0.0083 | |
| | w_{1} | 1.7660 | 3.7274 | 84.6491 | |
| | w_{2} | 0.7566 | 3.7290 | 84.6418 | |
| | w_{3} | -1.1258 | 0.4748 | 16.8616 | |
| | w_{4} | 2.0705 | 0.4774 | 16.8696 | |
| | w_{5} | -0.9295 | 0.0598 | 3.9620 | |
| | DEV=677.9307 | Total | 8.4688 | 206.9924 | 227.31 |
| HKB$k=0.0110$ | constant | 0.2603 | 0.0012 | 0.0083 | |
| | w_{1} | 1.6279 | 7.5134 | 89.4944 | |
| | w_{2} | 0.8148 | 7.5205 | 89.5277 | |
| | w_{3} | -0.8186 | 1.1903 | 12.9997 | |
| | w_{4} | 1.7343 | 1.2017 | 13.0362 | |
| | w_{5} | -0.8755 | 0.1725 | 3.6107 | |
| | DEV $=678.3155$ | Total | 17.5998 | 208.6769 | 225.47 |
| SRW1$k=0.0049$ | constant | 0.2607 | 0.0007 | 0.0083 | |
| | w_{1} | 1.7410 | 5.3347 | 75.8115 | |
| | w_{2} | 0.7500 | 5.3379 | 75.8113 | |
| | w_{3} | -0.9980 | 0.7782 | 15.0686 | |
| | w_{4} | 1.9298 | 0.7845 | 15.0844 | |
| | w_{5} | -0.9096 | 0.1066 | 3.8196 | |
| | DEV=678.0576 | Total | 12.3425 | 185.6036 | 253.50 |
| SRW2$k=0.0231$ | constant | 0.2597 | 0.0018 | 0.0083 | |
| | w_{1} | 1.4706 | 9.0672 | 117.6608 | |
| | w_{2} | 0.8780 | 9.0787 | 117.7376 | |
| | w_{3} | -0.5861 | 1.7040 | 12.1191 | |
| | w_{4} | 1.4650 | 1.7240 | 12.2137 | |
| | w_{5} | -0.8194 | 0.2861 | 3.3469 | |
| | DEV $=678.6742$ | Total | 21.8618 | 263.0863 | 178.84 |

Table A.2.7 (Continued)

Method	Variable	${ }^{\text {a }}$ Coef.	\mid Bias	MSE	RE
GM	constant	0.2574	0.0041	0.0082	
$k=0.1769$	w_{1}	0.9503	11.5095	205.6181	
	w_{2}	0.9148	11.5362	205.2973	
	w_{3}	0.0643	3.1357	15.9533	
	w_{4}	0.6455	3.2102	16.5493	
WA	w_{5}	-0.5588	0.7761	2.4006	
$k=0.0545$	Total	30.1719	445.8268	105.54	
	REV $=680.0883$				
	constant	0.2587	0.0028	0.0082	
	w_{1}	1.2030	10.5714	164.3453	
	w_{2}	0.9487	10.5875	164.4823	
	w_{3}	-0.2600	2.3956	12.8822	
	w_{4}	1.0623	2.4365	13.1711	
	w_{5}	-0.7092	0.4961	3.0808	
	Dotal	26.4899	357.9700	131.44	

Note: $k_{u b}=12.7354$; results of ridge parameter reported as medians; a estimated standardized regression coefficients

Table A.2.8 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.99, \rho_{34}=0.90$ and $n=1,000$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.3118 | 0.0000 | 0.0041 | |
| | w_{1} | 1.8676 | 0.0000 | 209.8126 | |
| | w_{2} | 0.9309 | 0.0000 | 209.8143 | |
| | w_{3} | -1.2086 | 0.0000 | 21.7579 | |
| | w_{4} | 2.2570 | 0.0000 | 21.7643 | |
| | w_{5} | -1.0885 | 0.0000 | 4.1482 | |
| | DEV=1355.0240 | Total | 0.0000 | 467.3013 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0053 \end{aligned}$ | constant | 0.3112 | 0.0007 | 0.0041 | |
| | w_{1} | 1.6949 | 5.6674 | 78.3538 | |
| | w_{2} | 0.9384 | 5.6773 | 78.3839 | |
| | w_{3} | -0.8896 | 0.9644 | 14.6942 | |
| | w_{4} | 1.8686 | 0.9780 | 14.7358 | |
| | w_{5} | -1.0076 | 0.1481 | 3.5921 | |
| | $\mathrm{DEV}=1355.3653$ | Total | 13.4359 | 189.7640 | 246.25 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0021 \end{aligned}$ | constant | 0.3116 | 0.0003 | 0.0041 | |
| | w_{1} | 1.7999 | 3.7464 | 88.2333 | |
| | w_{2} | 0.9619 | 3.7499 | 88.2376 | |
| | w_{3} | -1.0705 | 0.4544 | 17.1208 | |
| | w_{4} | 2.1033 | 0.4559 | 17.1257 | |
| | w_{5} | -1.0686 | 0.0432 | 3.9574 | |
| | DEV=1355.1230 | Total | 8.4500 | 214.6789 | 217.67 |
| HKB$k=0.0100$ | constant | 0.3111 | 0.0007 | 0.0041 | |
| | w_{1} | 1.6212 | 7.6834 | 92.5318 | |
| | w_{2} | 1.0602 | 7.6897 | 92.5189 | |
| | w_{3} | -0.7943 | 1.1619 | 13.3758 | |
| | w_{4} | 1.7929 | 1.1712 | 13.4017 | |
| | w_{5} | -1.0207 | 0.1310 | 3.6183 | |
| | $\mathrm{DEV}=1355.5066$ | Total | 17.8380 | 215.4506 | 216.89 |
| SRW1$k=0.0045$ | constant | 0.3114 | 0.0005 | 0.0041 | |
| | w_{1} | 1.7360 | 5.4377 | 78.6712 | |
| | w_{2} | 0.9891 | 5.4436 | 78.6752 | |
| | w_{3} | -0.9602 | 0.7650 | 15.3297 | |
| | w_{4} | 1.9778 | 0.7692 | 15.3374 | |
| | w_{5} | -1.0490 | 0.0804 | 3.8104 | |
| | $\mathrm{DEV}=1355.2523$ | Total | 12.4964 | 191.8281 | 243.60 |
| SRW2$k=0.0212$ | constant | 0.3107 | 0.0011 | 0.0041 | |
| | w_{1} | 1.4846 | 9.3601 | 122.7785 | |
| | w_{2} | 1.0938 | 9.3682 | 122.7329 | |
| | w_{3} | -0.5693 | 1.7065 | 12.5476 | |
| | w_{4} | 1.5266 | 1.7243 | 12.6297 | |
| | w_{5} | -0.9622 | 0.2315 | 3.3172 | |
| | DEV=1355.8843 | Total | 22.3917 | 274.0101 | 170.54 |

Table A.2.8 (Continued)

Method	Variable	${ }^{\text {a Coef. }}$	\mid Bias	MSE	RE
GM	constant	0.3094	0.0024	0.0041	
$k=0.1456$	w_{1}	1.0593	12.0344	222.2062	
	w_{2}	1.0474	12.0121	220.5507	
	w_{3}	0.0680	3.1732	16.5923	
	w_{4}	0.7180	3.2232	17.1171	
WA	w_{5}	-0.7235	0.6653	2.2621	
$k=0.0513$	DEV $=1357.2997$	Total	31.1106	478.7326	97.61
	constant	0.3101	0.0018	0.0041	
	w_{1}	1.2698	11.0106	175.3745	
	w_{2}	1.0963	11.0185	175.2076	
	w_{3}	-0.2439	2.4493	13.7207	
	w_{4}	1.1193	2.4875	14.0103	
	w_{5}	-0.8470	0.4234	2.9312	
		Total	27.3911	381.2484	122.57

Note: $k_{u b}=12.3705$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.2.9 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.99, \rho_{34}=0.99$ and $n=100$.

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.3899 | 0.0000 | 0.0460 | |
| | w_{1} | 2.6157 | 0.0000 | 248.1356 | |
| | w_{2} | 1.0282 | 0.0000 | 248.0858 | |
| | w_{3} | -2.8003 | 0.0000 | 250.7020 | |
| | w_{4} | 4.0050 | 0.0000 | 250.6873 | |
| | w_{5} | -1.4002 | 0.0000 | 4.8008 | |
| | $\mathrm{DEV}=126.4370$ | Total | 0.0000 | 1002.4576 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0027 \end{aligned}$ | constant | 0.3815 | 0.0085 | 0.0459 | |
| | w_{1} | 2.2133 | 6.1726 | 109.2940 | |
| | w_{2} | 1.2915 | 6.1705 | 109.2714 | |
| | w_{3} | -1.3722 | 6.0464 | 108.7649 | |
| | w_{4} | 2.5275 | 6.0673 | 108.8804 | |
| | w_{5} | -1.3223 | 0.1756 | 4.4520 | |
| | $\mathrm{DEV}=126.8505$ | Total | 24.6408 | 440.7086 | 227.46 |
| $\begin{aligned} & \text { HK } \\ & k=0.0007 \end{aligned}$ | constant | 0.3867 | 0.0032 | 0.0459 | |
| | w_{1} | 2.4681 | 3.0075 | 140.2593 | |
| | w_{2} | 1.1354 | 3.0066 | 140.2485 | |
| | w_{3} | -2.1138 | 2.8891 | 140.0022 | |
| | w_{4} | 3.3047 | 2.8920 | 140.0284 | |
| | w_{5} | -1.3802 | 0.0673 | 4.6640 | |
| | DEV $=126.5304$ | Total | 11.8657 | 565.2483 | 177.35 |
| $\begin{aligned} & \mathrm{HKB} \\ & k=0.0033 \end{aligned}$ | constant | 0.3812 | 0.0088 | 0.0459 | |
| | w_{1} | 2.1772 | 6.7595 | 110.3104 | |
| | w_{2} | 1.3429 | 6.7541 | 110.2411 | |
| | w_{3} | -1.1969 | 6.6936 | 111.0590 | |
| | w_{4} | 2.3609 | 6.7027 | 111.1020 | |
| | w_{5} | -1.3296 | 0.1730 | 4.4610 | |
| | $\mathrm{DEV}=126.9185$ | Total | 27.0917 | 447.2193 | 224.15 |
| $\begin{aligned} & \text { SRW1 } \\ & k=0.0017 \end{aligned}$ | constant | 0.3837 | 0.0063 | 0.0459 | |
| | w_{1} | 2.3509 | 5.0312 | 114.1448 | |
| | w_{2} | 1.2078 | 5.0288 | 114.1186 | |
| | w_{3} | -1.6340 | 4.8994 | 113.5512 | |
| | w_{4} | 2.8113 | 4.9066 | 113.5874 | |
| | w_{5} | -1.3538 | 0.1249 | 4.5591 | |
| | DEV $=126.6969$ | Total | 19.9972 | 460.0071 | 217.92 |
| SRW2$k=0.0078$ | constant | 0.3761 | 0.0140 | 0.0460 | |
| | w_{1} | 1.9837 | 9.1541 | 135.5813 | |
| | w_{2} | 1.4233 | 9.1462 | 135.3849 | |
| | w_{3} | -0.5781 | 9.1884 | 140.5547 | |
| | w_{4} | 1.7076 | 9.2090 | 140.6861 | |
| | w_{5} | -1.2586 | 0.2831 | 4.2462 | |
| | DEV=127.4020 | Total | 36.9947 | 556.4992 | 180.14 |

Table A.2.9 (Continued)

Method	Variable	${ }^{\text {a Coef. }}$	\mid Bias	MSE	RE
GM	constant	0.3627	0.0276	0.0464	
$k=0.0842$	w_{1}	1.4236	12.6132	252.5444	
	w_{2}	1.4128	12.5666	250.6083	
	w_{3}	0.3683	12.8529	268.9274	
	w_{4}	0.5313	12.8988	270.1859	
WA	w_{5}	-0.9262	0.7184	3.1939	
$k=0.0197$		Total	51.6775	1045.5064	95.88
	DEV=128.8905				
	constant	0.3700	0.0202	0.0462	
	w_{1}	1.7289	11.2054	191.6185	
	w_{2}	1.4877	11.1939	191.1592	
	w_{3}	-0.0126	11.3562	203.4055	
	w_{4}	1.0843	11.3972	203.7772	
	w_{5}	-1.1420	0.4442	3.9871	
	DEV=128.1025	Total	45.6171	793.9939	126.26

Note: $k_{u b}=6.9007$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.2.10 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.99, \rho_{34}=0.99$ and $n=200$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.4977 | 0.0000 | 0.0225 | |
| | w_{1} | 3.6077 | 0.0000 | 232.3441 | |
| | w_{2} | 0.4026 | 0.0000 | 232.2606 | |
| | w_{3} | -1.0104 | 0.0000 | 233.9651 | |
| | w_{4} | 2.3918 | 0.0000 | 233.9892 | |
| | w_{5} | -1.7509 | 0.0000 | 4.5809 | |
| | DEV=256.4165 | Total | 0.0000 | 937.1624 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0030 \end{aligned}$ | constant | 0.4922 | 0.0054 | 0.0225 | |
| | w_{1} | 2.7925 | 5.8656 | 97.7974 | |
| | w_{2} | 1.0768 | 5.8580 | 97.6846 | |
| | w_{3} | -0.2788 | 6.0187 | 99.7477 | |
| | w_{4} | 1.6080 | 6.0069 | 99.6445 | |
| | w_{5} | -1.6748 | 0.1479 | 4.2555 | |
| | DEV=256.8360 | Total | 23.9025 | 399.1522 | 234.79 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0008 \end{aligned}$ | constant | 0.4957 | 0.0020 | 0.0225 | |
| | w_{1} | 3.2818 | 2.6867 | 130.4903 | |
| | w_{2} | 0.6938 | 2.6847 | 130.4293 | |
| | w_{3} | -0.7022 | 2.7704 | 131.6019 | |
| | w_{4} | 2.0700 | 2.7681 | 131.5952 | |
| | w_{5} | -1.7308 | 0.0490 | 4.4742 | |
| | DEV=256.5005 | Total | 10.9608 | 528.6134 | 177.29 |
| $\begin{aligned} & \text { НКВ } \\ & k=0.0035 \end{aligned}$ | constant | 0.4922 | 0.0055 | 0.0225 | |
| | w_{1} | 2.7482 | 6.2829 | 98.2481 | |
| | w_{2} | 1.1517 | 6.2759 | 98.1468 | |
| | w_{3} | -0.2002 | 6.4676 | 100.9968 | |
| | w_{4} | 1.5412 | 6.4596 | 100.9163 | |
| | w_{5} | -1.6830 | 0.1362 | 4.2898 | |
| | DEV=256.8754 | Total | 25.6276 | 402.6202 | 232.77 |
| $\begin{aligned} & \text { SRW1 } \\ & k=0.0019 \end{aligned}$ | constant | 0.4938 | 0.0039 | 0.0225 | |
| | w_{1} | 3.0011 | 4.6856 | 102.9654 | |
| | w_{2} | 0.9304 | 4.6836 | 102.9029 | |
| | w_{3} | -0.4568 | 4.8094 | 104.3895 | |
| | w_{4} | 1.8090 | 4.8036 | 104.3455 | |
| | w_{5} | -1.7036 | 0.0991 | 4.3699 | |
| | DEV=256.6704 | Total | 19.0852 | 418.9956 | 223.67 |
| SRW2$k=0.0089$ | constant | 0.4888 | 0.0089 | 0.0225 | |
| | w_{1} | 2.3598 | 8.7131 | 122.7683 | |
| | w_{2} | 1.4202 | 8.7011 | 122.5455 | |
| | w_{3} | 0.1171 | 8.8815 | 124.9063 | |
| | w_{4} | 1.1828 | 8.8666 | 124.7436 | |
| | w_{5} | -1.6052 | 0.2466 | 4.0577 | |
| | DEV=257.3627 | Total | 35.4179 | 499.0439 | 187.79 |

Table A.2.10 (Continued)

Method	Variable	${ }^{\text {a Coef. }}$	\mid Bias	MSE	RE
GM	constant	0.4805	0.0172	0.0227	
$k=0.0655$	w_{1}	1.7398	11.9432	222.8291	
	w_{2}	1.5771	11.9068	221.7649	
	w_{3}	0.4711	12.1284	228.3726	
	w_{4}	0.6442	12.0948	227.9301	
	w_{5}	-1.3229	0.5937	3.1175	
WA	Total	48.6840	904.0369	103.66	
$k=0.0214$	DEV $=258.6292$				
	constant	0.4846	0.0131	0.0226	
	w_{1}	2.0060	10.7349	174.8088	
	w_{2}	1.5674	10.7086	174.2855	
	w_{3}	0.3778	10.8948	177.5425	
	w_{4}	0.8527	10.8693	177.3059	
	w_{5}	-1.4738	0.4128	3.7920	
		Total	43.6335	707.7573	132.41

Note: $k_{u b}=7.0632$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.2.11 The Results of the ML and LRR Estimator Performances for

$$
\rho_{12}=0.99, \rho_{34}=0.99 \text { and } n=500 .
$$

| Method | Variable | ${ }^{\text {a }}$ Coef. | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.4247 | 0.0000 | 0.0085 | |
| | w_{1} | 0.8543 | 0.0000 | 217.2867 | |
| | w_{2} | 1.7656 | 0.0000 | 217.3002 | |
| | w_{3} | -2.0822 | 0.0000 | 216.3521 | |
| | w_{4} | 3.0030 | 0.0000 | 216.3596 | |
| | w_{5} | -1.2144 | 0.0000 | 4.2826 | |
| | $\mathrm{DEV}=664.7201$ | Total | 0.0000 | 871.5897 | 100.00 |
| KOPT | constant | 0.4229 | 0.0018 | 0.0085 | |
| $k=0.0031$ | w_{1} | 1.0079 | 5.6345 | 88.6548 | |
| | w_{2} | 1.5141 | 5.6273 | 88.6920 | |
| | w_{3} | -0.9494 | 5.5414 | 87.4119 | |
| | w_{4} | 1.8356 | 5.5430 | 87.4253 | |
| | w_{5} | -1.1578 | 0.1311 | 3.9343 | |
| | DEV=665.1476 | Total | 22.4791 | 356.1267 | 244.74 |
| HK | constant | 0.4240 | 0.0007 | 0.0085 | |
| $k=0.0009$ | w_{1} | 0.9432 | 2.7574 | 115.2821 | |
| | w_{2} | 1.6543 | 2.7546 | 115.2860 | |
| | w_{3} | -1.5962 | 2.7376 | 114.7081 | |
| | w_{4} | 2.5102 | 2.7393 | 114.7182 | |
| | w_{5} | -1.1980 | 0.0412 | 4.1699 | |
| | $\mathrm{DEV}=664.8154$ | Total | 11.0308 | 464.1728 | 187.77 |
| HKB | constant | 0.4228 | 0.0018 | 0.0085 | |
| $k=0.0039$ | w_{1} | 1.0572 | 6.2081 | 90.2963 | |
| | w_{2} | 1.4921 | 6.2056 | 90.3397 | |
| | w_{3} | -0.8078 | 6.0721 | 87.9802 | |
| | w_{4} | 1.7054 | 6.0777 | 88.0281 | |
| | w_{5} | -1.1646 | 0.1119 | 3.9633 | |
| | $\mathrm{DEV}=665.2060$ | Total | 24.6772 | 360.6162 | 241.69 |
| SRW1 | constant | 0.4234 | 0.0013 | 0.0085 | |
| $k=0.0020$ | w_{1} | 0.9800 | 4.5208 | 92.9779 | |
| | w_{2} | 1.5915 | 4.5158 | 92.9889 | |
| | w_{3} | -1.2080 | 4.4592 | 92.2568 | |
| | w_{4} | 2.1139 | 4.4631 | 92.2812 | |
| | w_{5} | -1.1797 | 0.0791 | 4.0695 | |
| | DEV $=664.9769$ | Total | 18.0393 | 374.5827 | 232.68 |
| SRW2 | constant | 0.4219 | 0.0028 | 0.0085 | |
| $k=0.0093$ | w_{1} | 1.0727 | 8.2475 | 112.2964 | |
| | w_{2} | 1.4042 | 8.2449 | 112.4102 | |
| | w_{3} | -0.3334 | 8.0064 | 106.2543 | |
| | w_{4} | 1.2075 | 8.0166 | 106.3829 | |
| | w_{5} | -1.1156 | 0.1962 | 3.7357 | |
| | DEV $=665.6366$ | Total | 32.7143 | 441.0881 | 197.60 |

Table A.2.11 (Continued)

Method	Variable	${ }^{\text {a Coef. }}$	\mid Bias	MSE	RE
GM	constant	0.4193	0.0054	0.0085	
$k=0.0971$	w_{1}	1.0729	11.2583	205.0956	
	w_{2}	1.0827	11.2888	205.5814	
	w_{3}	0.2933	10.8373	188.4532	
	w_{4}	0.4499	10.8638	189.2019	
	w_{5}	-0.8978	0.5475	2.5993	
WA	Total	44.8012	790.9398	110.20	
$k=0.0227$	DEV=666.7977				
	constant	0.4207	0.0040	0.0085	
	w_{1}	1.1016	10.0776	158.9490	
	w_{2}	1.2475	10.0820	159.2014	
	w_{3}	0.0632	9.7186	146.7712	
	w_{4}	0.7693	9.7351	147.0870	
	w_{5}	-1.0301	0.3300	3.4371	
	DEV=666.2448	Total	39.9473	615.4542	141.62

Note: $k_{u b}=9.1594$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Table A.2.12 The Results of the ML and LRR Estimator Performances for $\rho_{12}=0.99, \rho_{34}=0.99$ and $n=1,000$.

| Method | Variable | ${ }^{\text {a Coef. }}$ | \|Bias| | MSE | RE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ML | constant | 0.3791 | 0.0000 | 0.0042 | |
| | w_{1} | 1.5135 | 0.0000 | 211.7635 | |
| | w_{2} | 1.0008 | 0.0000 | 211.7590 | |
| | w_{3} | -1.2978 | 0.0000 | 212.2370 | |
| | w_{4} | 2.0746 | 0.0000 | 212.2491 | |
| | w_{5} | -1.1677 | 0.0000 | 4.1950 | |
| | DEV=1344.3251 | Total | 0.0000 | 852.2077 | 100.00 |
| $\begin{aligned} & \text { KOPT } \\ & k=0.0033 \end{aligned}$ | constant | 0.3783 | 0.0008 | 0.0042 | |
| | w_{1} | 1.4114 | 5.3679 | 87.3130 | |
| | w_{2} | 1.0380 | 5.3612 | 87.2925 | |
| | w_{3} | -0.7419 | 5.8300 | 92.5622 | |
| | w_{4} | 1.4952 | 5.8244 | 92.5255 | |
| | w_{5} | -1.1236 | 0.1019 | 3.8866 | |
| | DEV=1344.7482 | Total | 22.4862 | 363.5840 | 234.39 |
| $\begin{aligned} & \mathrm{HK} \\ & k=0.0009 \end{aligned}$ | constant | 0.3788 | 0.0003 | 0.0042 | |
| | w_{1} | 1.4806 | 2.6411 | 115.2019 | |
| | w_{2} | 1.0211 | 2.6393 | 115.1949 | |
| | w_{3} | -1.0726 | 2.8706 | 116.7888 | |
| | w_{4} | 1.8447 | 2.8702 | 116.7906 | |
| | w_{5} | -1.1544 | 0.0302 | 4.1063 | |
| | DEV=1344.4220 | Total | 11.0517 | 468.0867 | 182.06 |
| $\begin{aligned} & \mathrm{HKB} \\ & k=0.0042 \end{aligned}$ | constant | 0.3782 | 0.0008 | 0.0042 | |
| | w_{1} | 1.4285 | 6.0012 | 88.1483 | |
| | w_{2} | 1.0410 | 5.9981 | 88.1501 | |
| | w_{3} | -0.6372 | 6.5088 | 94.5757 | |
| | w_{4} | 1.3975 | 6.5081 | 94.5617 | |
| | w_{5} | -1.1248 | 0.0882 | 3.9195 | |
| | DEV=1344.8291 | Total | 25.1052 | 369.3596 | 230.73 |
| SRW1$k=0.0020$ | constant | 0.3785 | 0.0006 | 0.0042 | |
| | w_{1} | 1.4582 | 4.2618 | 93.0725 | |
| | w_{2} | 1.0286 | 4.2585 | 93.0669 | |
| | w_{3} | -0.8807 | 4.6279 | 96.4067 | |
| | w_{4} | 1.6474 | 4.6273 | 96.4000 | |
| | w_{5} | -1.1404 | 0.0577 | 4.0244 | |
| | DEV=1344.5761 | Total | 17.8338 | 382.9746 | 222.52 |
| SRW2$k=0.0095$ | constant | 0.3778 | 0.0013 | 0.0042 | |
| | w_{1} | 1.3716 | 7.9399 | 107.2112 | |
| | w_{2} | 1.0481 | 7.9349 | 107.2264 | |
| | w_{3} | -0.3251 | 8.5576 | 117.0363 | |
| | w_{4} | 1.0679 | 8.5560 | 117.0169 | |
| | w_{5} | -1.0846 | 0.1568 | 3.7057 | |
| | DEV=1345.2559 | Total | 33.1465 | 452.2007 | 188.46 |

Table A.2.12 (Continued)

Method	Variable	${ }^{\text {a}}$ Coef.	\mid Bias	MSE	RE
GM	constant	0.3765	0.0026	0.0042	
$k=0.0952$	w_{1}	1.0545	11.1549	207.6856	
	w_{2}	1.0286	11.1618	207.4891	
	w_{3}	0.2496	11.7897	212.4173	
	w_{4}	0.3893	11.7993	213.1414	
	w_{5}	-0.8487	0.5573	2.5514	
WA	Total	46.4655	843.2889	101.06	
$k=0.0233$					
	DEV $=1346.5847$				
	w_{1}	1.2385	9.8771	156.4721	
	w_{2}	1.0804	9.8738	156.5031	
	w_{3}	0.0259	10.5065	164.7063	
	w_{4}	0.6826	10.5052	164.7292	
	w_{5}	-1.0065	0.2813	3.3890	
	DEV $=1345.9021$	Total	41.0457	645.8039	131.96

Note: $k_{u b}=10.5190$; results of ridge parameter reported as medians; aestimated standardized regression coefficients

Appendix B

Distribution of Ridge Parameter in Case of Having Three Explanatory Variables

Figure B. 1 Distribution of Ridge Parameter for $\rho=0.90, n=100$.

Figure B. 1 (Continued)

Figure B. 1 (Continued)

Figure B. 2 Distribution of Ridge Parameter for $\rho=0.90, n=200$.

Figure B. 2 (Continued)

Figure B. 2 (Continued)

Figure B. 3 Distribution of Ridge Parameter for $\rho=0.90, n=500$.

Figure B. 3 (Continued)

Figure B. 3 (Continued)

Figure B. 4 Distribution of Ridge Parameter for $\rho=0.90, n=1000$.

Figure B. 4 (Continued)

Figure B. 4 (Continued)

Figure B. 5 Distribution of Ridge Parameter for $\rho=0.95, n=100$.

Figure B. 5 (Continued)

Figure B. 5 (Continued)

Figure B. 6 Distribution of Ridge Parameter for $\rho=0.95, n=200$.

Figure B. 6 (Continued)

Figure B. 6 (Continued)

Figure B. 7 Distribution of Ridge Parameter for $\rho=0.95, n=500$.

Figure B. 7 (Continued)

Figure B. 7 (Continued)

Figure B. 8 Distribution of Ridge Parameter for $\rho=0.95, n=1000$.

Figure B. 8 (Continued)

Figure B. 8 (Continued)

Figure B. 9 Distribution of Ridge Parameter for $\rho=0.99, n=100$.

Figure B. 9 (Continued)

Figure B. 9 (Continued)

Figure B. 10 Distribution of Ridge Parameter for $\rho=0.99, n=200$.

Figure B. 10 (Continued)

Figure B. 10 (Continued)

Figure B. 11 Distribution of Ridge Parameter for $\rho=0.99, n=500$.

Figure B. 11 (Continued)

Figure B. 11 (Continued)

Figure B. 12 Distribution of Ridge Parameter for $\rho=0.99, n=1000$.

Figure B. 12 (Continued)

Figure B. 12 (Continued)

Appendix C

Distribution of Ridge Parameter in Case of Having Five Explanatory Variables

Figure C. 1 Distribution of Ridge Parameter for $\rho_{12}=0.90, \rho_{34}=0.90, n=100$.

Figure C. 1 (Continued)

Figure C. 1 (Continued)

Figure C. 2 Distribution of Ridge Parameter for $\rho_{12}=0.90, \rho_{34}=0.90, n=200$.

Figure C. 2 (Continued)

Figure C. 2 (Continued)

Figure C. 3 Distribution of Ridge Parameter for $\rho_{12}=0.90, \rho_{34}=0.90, n=500$.

Figure C. 3 (Continued)

Figure C. 3 (Continued)

Figure C. 4 Distribution of Ridge Parameter for $\rho_{12}=0.90, \rho_{34}=0.90, n=1000$.

Figure C. 4 (Continued)

Figure C. 4 (Continued)

Figure C. 5 Distribution of Ridge Parameter for $\rho_{12}=0.99, \rho_{34}=0.90, n=100$.

Figure C. 5 (Continued)

Figure C. 5 (Continued)

Figure C. 6 Distribution of Ridge Parameter for $\rho_{12}=0.99, \rho_{34}=0.90, n=200$.

Figure C. 6 (Continued)

Figure C. 6 (Continued)

Figure C. 7 Distribution of Ridge Parameter for $\rho_{12}=0.99, \rho_{34}=0.90, n=500$.

Figure C. 7 (Continued)

Figure C. 7 (Continued)

Figure C. 8 Distribution of Ridge Parameter for $\rho_{12}=0.99, \rho_{34}=0.90, n=1000$.

Figure C. 8 (Continued)

Figure C. 8 (Continued)

Figure C. 9 Distribution of Ridge Parameter for $\rho_{12}=0.99, \rho_{34}=0.99, n=100$.

Figure C. 9 (Continued)

Figure C. 9 (Continued)

Figure C. 10 Distribution of Ridge Parameter for $\rho_{12}=0.99, \rho_{34}=0.99, n=200$.

Figure C. 10 (Continued)

Figure C. 10 (Continued)

Figure C. 11 Distribution of Ridge Parameter for $\rho_{12}=0.99, \rho_{34}=0.99, n=500$.

Figure C. 11 (Continued)

Figure C. 11 (Continued)

Figure C. 12 Distribution of Ridge Parameter for $\rho_{12}=0.99, \rho_{34}=0.99, n=1000$.

Figure C. 12 (Continued)

Figure C. 12 (Continued)

Appendix D

The Lee Cancer Remission Dataset

The data (Lee, 1974) consist of patient characteristics and feature of cancer remission. The binary response is the cancer remission indicator variable with a value of 1 if the patient received a complete cancer remission and a value of 0 otherwise. The other variables are the risk factors which thought to involve to cancer remission: cellularity of the morrow clot section (CELL), Smear differential percentage of blasts (SMEAR), percentage of absolute morrow leukemia cell infiltrate (INFIL), percentage labeling index of the bone marrow leukemia cells (LI), and the highest temperature prior to star of treatment (TEMP).

Table D. 1 The Lee Cancer remission dataset

Obs	Y	CELL	SMEAR	INFIL	LI	TEMP
1	1	0.8	0.83	0.66	1.9	0.996
2	1	0.9	0.36	0.32	1.4	0.992
3	0	0.8	0.88	0.7	0.8	0.982
4	0	1	0.87	0.87	0.7	0.986
5	1	0.9	0.75	0.68	1.3	0.98
6	0	1	0.65	0.65	0.6	0.982
7	1	0.95	0.97	0.92	1	0.992
8	0	0.95	0.87	0.83	1.9	1.02
9	0	1	0.45	0.45	0.8	0.999
10	0	0.95	0.36	0.34	0.5	1.038
11	0	0.85	0.39	0.33	0.7	0.988
12	0	0.7	0.76	0.53	1.2	0.982
13	0	0.8	0.46	0.37	0.4	1.006
14	0	0.2	0.39	0.08	0.8	0.99
15	0	1	0.9	0.9	1.1	0.99
16	1	1	0.84	0.84	1.9	1.02
17	0	0.65	0.42	0.27	0.5	1.014
18	0	1	0.75	0.75	1	1.004
19	0	0.5	0.44	0.22	0.6	0.99
20	1	1	0.63	0.63	1.1	0.986
21	0	1	0.33	0.33	0.4	1.01
22	0	0.9	0.93	0.84	0.6	1.02
23	1	1	0.58	0.58	1	1.002

Table D. 2 (Continued)

Obs	Y	CELL	SMEAR	INFIL	LI	TEMP
24	0	0.95	0.32	0.3	1.6	0.988
25	1	1	0.6	0.6	1.7	0.99
26	1	1	0.69	0.69	0.9	0.986
27	0	1	0.73	0.73	0.7	0.986

BIOGRAPHY

NAME
ACADEMIC BACKGROUND
\section*{PRESENT POSITION}
Miss Piyada Phrueksawatnon
Bachelor's Degree with a major in Mathematics from Naresuan University, Thailand in 2003 and Master’s Degree Applied Statistics from Chiang Mai University, Thailand in 2005.
Lecturer, School of Science and
Technology, University of Phayao, Phayao Province, Thailand

[^0]: Tables
 Page

