• English
    • ไทย
  • English 
    • English
    • ไทย
  • Login
View Item 
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Wisdom RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource TypesThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource Types

My Account

Login

Variance estimation for adaptive cluster sampling with a single primary unit and the partially systematic adaptive cluster sampling

by Urairat Netharn

Title:

Variance estimation for adaptive cluster sampling with a single primary unit and the partially systematic adaptive cluster sampling

Author(s):

Urairat Netharn

Advisor:

Dryver, Arthur L, advisor

Degree name:

Doctor of Philosophy

Degree level:

Doctoral

Degree discipline:

Statistics

Degree department:

School of Applied Statistics

Degree grantor:

National Institute of Development Administration

Issued date:

2009

Digital Object Identifier (DOI):

10.14457/NIDA.the.2009.145

Publisher:

National Institute of Development Administration

Abstract:

Two topics are investigated in this dissertation. The first concerns variance estimation when a single primary sampling unit is selected. Two new bias variance estimators, based on splitting the initial sample into sub-samples and regarding the initial sample as a stratified sample, are proposed. The results of this study indicated that both new variance estimators are underestimated. The first variance estimator is not preferable when the number of sub-samples is two because its relative bias is too large to be useful. Increasing the number of sub-samples made its relative bias decrease. When the sub-sample size and stratum size equal two, the second variance estimator is more efficient than the first in terms of minimum relative bias and mean squared error. However, both new variance estimators are less efficient than nonadaptive variance estimators in systematic sampling in terms of relative bias in some case. This may result from ignoring the correlation terms between sub-samples or between units in stratum. In addition, the percentage of intervals containing the true population mean for both new variance estimators is less than ninety-five percent. For the second topic, the design of partially systematic adaptive cluster sampling, in which the initial sample selected by sampling without replacement of units, without replacement of networks, and without replacement of clusters, is studied. The results of this study indicated that all three sampling procedures can provide unbiased estimators of the population mean and its variance. An unbiased estimator of the population mean based on a selection without replacement of clusters is the most efficient in terms of minimum variance, while an unbiased estimator of the population mean obtained by sampling without replacement of units is the least efficient. The efficiency comparison between all three estimators proposed for partially systematic adaptive cluster sampling and a modified Raj type estimator proposed by Raj (1956) indicated that the proposed estimators are more efficient than the modified Raj type estimator. However, the percentage of intervals containing the true population mean for the proposed estimators is less than ninety-five percent. This may have been caused by the distribution of proposed estimators not being asymptotic to normal distribution.

Description:

Thesis (Ph.D. (Statistics))--National Institute of Development Administration, 2009

Subject(s):

Analysis of variance
Adaptive sampling (Statistics)
Sampling (Statistics)
Estimation theory

Resource type:

Dissertation

Extent:

xiii, [116] leaves ; 30 cm.

Type:

Text

File type:

application/pdf

Language:

eng

Rights:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

URI:

http://repository.nida.ac.th/handle/662723737/409
Show full item record

Files in this item (CONTENT)

Thumbnail
View
  • nida-diss-b162434.pdf ( 1.29 MB )

ทรัพยากรสารสนเทศทั้งหมดในคลังปัญญา ใช้เพื่อประโยชน์ทางการเรียนการสอนและการค้นคว้าเท่านั้น และต้องมีการอ้างอิงแหล่งที่มาทุกครั้งที่นำไปใช้ ห้ามดัดแปลงเนื้อหา และทำสำเนาต่อ รวมถึงไม่ให้อนุญาตนำไปใช้ประโยชน์เพื่อการค้า ไม่ว่ากรณีใด ๆ ทั้งสิ้น



This item appears in the following Collection(s)

  • GSAS: Dissertations [166]

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Information Center | สำนักบรรณสารการพัฒนา
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

‹›×