A penalty function in binary logistic regression

dc.contributor.advisorJirawan Jitthavech
dc.contributor.authorPiyada Phrueksawatnon
dc.date.accessioned2023-05-15T03:04:09Z
dc.date.available2023-05-15T03:04:09Z
dc.date.issued2018
dc.date.issuedBE2561th
dc.descriptionThesis (Ph.D. (Statistics))--National Institute of Development Administration, 2018th
dc.description.abstractAn algorithm is proposed to determine the logistic ridge parameter minimizing the MSE of the estimated parameter estimators, together with a theorem on the upperbound of the optimal logistic ridge parameter to facilitate the nonlinear optimization. A simulation is used to evaluate the relative efficiencies of the proposed estimator and other six well-known ridge estimators with respect to the maximum likelihood estimator. The simulation results confirm that the relative efficiency of the proposed estimator is highest among other well-known estimators. Finally, a real-life data set is used to repeat the evaluation and the conclusion is the same as in the simulationth
dc.format.extent186 leavesth
dc.format.mimetypeapplication/pdfth
dc.identifier.doi10.14457/NIDA.the.2018.126
dc.identifier.otherb207809th
dc.identifier.urihttps://repository.nida.ac.th/handle/662723737/6422
dc.language.isoength
dc.publisherNational Institute of Development Administrationth
dc.rightsผลงานนี้เผยแพร่ภายใต้ สัญญาอนุญาตครีเอทีฟคอมมอนส์แบบ แสดงที่มา-ไม่ใช้เพื่อการค้า-ไม่ดัดแปลง 4.0 (CC BY-NC-ND 4.0)th
dc.subject.otherLogistic regression analysisth
dc.titleA penalty function in binary logistic regressionth
dc.typetext--thesis--doctoral thesisth
mods.genreDissertationth
mods.physicalLocationNational Institute of Development Administration. Library and Information Centerth
thesis.degree.departmentGraduate School of Applied Statisticsth
thesis.degree.disciplineStatisticsth
thesis.degree.grantorNational Institute of Development Administrationth
thesis.degree.levelDoctoralth
thesis.degree.nameDoctor of Philosophyth

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
b207809.pdf
Size:
5.72 MB
Format:
Adobe Portable Document Format
Description:
fulltext

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: