• English
    • ไทย
  • English 
    • English
    • ไทย
  • Login
View Item 
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
  •   Wisdom Repository Home
  • คณะและวิทยาลัย
  • คณะสถิติประยุกต์
  • GSAS: Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of Wisdom RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource TypesThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit DateResource Types

My Account

Login

Tests for mean vectors in high-dimensional data

by Knavoot Jiamwattanapong

Title:

Tests for mean vectors in high-dimensional data

Author(s):

Knavoot Jiamwattanapong

Advisor:

Samruam Chongcharoen

Degree name:

Doctor of Philosophy

Degree level:

Doctoral

Degree discipline:

Statistics

Degree department:

School of Applied Statistics

Degree grantor:

National Institute of Development Administration

Issued date:

2015

Publisher:

National Institute of Development Administration

Abstract:

High-dimensional data are ubiquitous and bring new challenges, not only to statisticians, but also to researchers in many scientific fields. They arise in situations where the dimension ( p) , the number of variables in a unit, is larger than the sample size (n), the number of units; data analysis using classical multivariate methods can no longer be applied.
In this study, the hypothesis testing problems considered are H : μ = 0 against K:μ≠0 in the one-sample case and H:μ1 =μ2 against K:μ1 ≠μ2 in the two- sample case; in both cases the data are of high dimension and assumed to be p- multivariate normal with unknown covariance matrix. In two-sample problems, the two samples are assumed to be independent and drawn from populations having a common covariance matrix Σ . The one-sample test statistic was developed based on the idea of keeping more, or as much information as possible, from the sample covariance matrix, after which the idea was extended to the two-sample case. The proposed test statistics, both for one- and two-samples, were shown to asymptotically follow a standard normal distribution when the dimension goes to infinity. One favorable property of the proposed tests is that they are invariant under a group of scalar transformations x→Dx, where D =diag(c ,...,c ) and c ≠0, for all i, 1pi i=1,...,p.Results from simulation studies compared the proposed tests with previously reported ones and showed that they performed acceptably well for all forms of covariance matrices under the study and achieved higher powers when the dimension increased for a given sample size. Applications of the proposed tests were illustrated using real-life DNA microarray data.

Description:

Thesis (Ph.D. (Statistics))--National Institute of Development Administration, 2015

Subject(s):

Statistical hypothesis testing
Missing obeservations (Statistics)

Keyword(s):

High-dimension
Mean vector testing

Resource type:

Dissertation

Extent:

95 leaves

Type:

Text

File type:

application/pdf

Language:

eng

Rights:

ผลงานนี้เผยแพร่ภายใต้ลิขสิทธิ์ของสถาบันบัณฑิตพัฒนบริหารศาสตร์

Rights holder(s):

National Institute of Development Administration

URI:

https://repository.nida.ac.th/handle/662723737/5757
Show full item record

Files in this item (CONTENT)

Thumbnail
View
  • b191875.pdf ( 8,058.77 KB )

ทรัพยากรสารสนเทศทั้งหมดในคลังปัญญา ใช้เพื่อประโยชน์ทางการเรียนการสอนและการค้นคว้าเท่านั้น และต้องมีการอ้างอิงแหล่งที่มาทุกครั้งที่นำไปใช้ ห้ามดัดแปลงเนื้อหา และทำสำเนาต่อ รวมถึงไม่ให้อนุญาตนำไปใช้ประโยชน์เพื่อการค้า ไม่ว่ากรณีใด ๆ ทั้งสิ้น



This item appears in the following Collection(s)

  • GSAS: Dissertations [158]
Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Education Service Center | สำนักบริการการศึกษาและบรรณสาร
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

Copyright © National Institute of Development Administration | สถาบันบัณฑิตพัฒนบริหารศาสตร์
Library and Education Service Center | สำนักบริการการศึกษาและบรรณสาร
Email: NIDAWR@nida.ac.th    Chat: Facebook Messenger    Facebook: NIDAWisdomRepository
 

 

‹›×